436
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Tumor endothelial markers as a target in cancer

, , , , &
Pages 1215-1225 | Published online: 17 Sep 2012

Bibliography

  • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29(6 Suppl 16):15-18
  • Ribatti D, Nico B, Crivellato E, The history of the angiogenic switch concept. Leukemia 2007;21:44-52
  • Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leukemia Res 2007;31:439-44
  • Maniotis AJ, Folberg R, Hess AR, Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155:739-52
  • Holash J, Maisonpierre PC, Compton D, Vessel cooption, regression in tumors mediated by angiopoietins and VEGF. Science 1999;284:1994-8
  • Ribatti D, Djonov V. Intussusceptive microvascular growth in tumors. Cancer Lett 2012;316:126-31
  • Schlingemann RO, Oosterwijk E, Wesseling P, Aminopeptidase a is a constituent of activated pericytes in angiogenesis. J Pathol 1996;179:436-42
  • Marchio S, Lahdenranta J, Schlingemann RO, Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell 2004;5:151-62
  • Saiki I, Fujii Y, Yoneda F, Role of aminopeptidase N. (CD 13) in tumor cell invasion and extracellular matrix degradation. Int J Cancer 1993;54:137-43
  • Sato M, Arap W, Pasqualini R. Molecular targets on blood vessels for cancer therapies in clinical trials. Oncology (Williston Park) 2007;21:1346-52
  • Hatakeyama S, Sugihara K, Shibata TK, Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc Natl Acad Sci USA 2011;108:19587-9
  • Yan M, Callahan CA, Beyer JC, Chronic DLL4 blockade induces vascular neoplasms. Nature 2010;463:E6-7
  • Koutsioumpa M, Drosou G, Mikelis C, Pleiotrophin expression and role in physiological angiogenesis in vivo: potential involvement of nucleolin. Vasc Cell 2012;4:4
  • Stafford JH, Thorpe PE. Increased exposure of phosphatidylethanolamine on the surface of tumor vascular endothelium. Neoplasia 2011;13:299-308
  • Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569-71
  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377-80
  • Laubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol 2010;20:169-77
  • Burrows FJ, Derbyshire EJ, Tazzari PL, Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1995;5:2674-81
  • Seon BK. Expression of endoglin (CD105) in tumor blood vessels. Int J Cancer 2002;99:310-11
  • Brekken RA, Thorpe PE. Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res 2001;21:4221-9
  • Nillson F, Kosmehl H, Zardi L, Neri D. Targeted delivery of tissue factor to the ED-B-domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 2001;61:711-16
  • Chang SS, O’Keefe DS, Bacich DJ, Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 1999;5:2674-81
  • Dejana E, Giampietro C. Vascular endothelial-cadherin and vascular stability. Curr Opin Hematol 2004;19:218-23
  • Martin-Padura I, Bertolini F. Circulating endothelial cells as biomarkers for angiogenesis in tumor progression. Front Biosci (Schol Ed) 2009;1:304-18
  • Motzer RJ, Michaelson MD, Redman BG, Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptors, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006;24:16-24
  • Klement GL, Yip TT, Cassiola F, Platelets actively sequester angiogenesis regulators. Blood 2009;113:2835-42
  • Cervi D, Yip TT, Bhattacharya N, Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 2008;111:1201-7
  • Ranieri G, Coviello M, Patruno R, Vascular endothelial growth factor concentrations in the plasma-activated platelets rich (P-APR) of healthy controls and colorectal cancer patients. Oncol Rep 2004;12:817-20
  • Chang E, Boyd A, Nelson CC, Successful treatment of infantile hemangiomas with interferon alpha-2b. Pediatr Hematol Oncol 1997;19:237-44
  • Kumar H, Heer K, Greenman J, Soluble FLT-1 is detectable in the sera of colorectal and breast cancer patients. Anticancer Res 2002;22:1877-80
  • Norden-Zfoni A, Desai J, Manola J, Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin Cancer Res 2007;13:2643-50
  • Byrne GJ, Ghellal A, Iddon J, Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. J Natl Cancer Inst 2000;92:1329-36
  • Herbst RS, Hess KR, Tran HT, Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2002;20:3792-803
  • Drevs J, Zirrgiebel U, Schmidt-Gersbach CI, Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 2005;16:558-65
  • Kuenen BC, Levi M, Meijers JC, Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416. Clin Oncol 2003;21:2192-8
  • Dowlati A, Robertson K, Radivoyevitch T, Novel Phase I dose de-escalation design trial to determine the biological modulatory dose of the antiangiogenic agent SU5416. Clin Cancer Res 2005;11:7938-44
  • DeVore RF, Hellerqvist CG, Wakefield GB, Phase I study of the antineovascularization drug CM101. Clin Cancer Res 1997;3:365-72
  • Stempak D, Gammon J, Halton J, A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J Pediatr Hematol Oncol 2006;28:720-8
  • Gao D, Nolan DJ, Mellick AS, Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008;319:195-8
  • De Palma M, Venneri MA, Galli R, Tie 2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8:211-26
  • Rajantie I, Ilmonen M, Alminaite A, Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 2004;104:2084-6
  • Song S, Ewald AJ, Stallcup W, PDGFRbeta+ prerivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005;7:870-9
  • Yang L, DeBusk LM, Fukuda K, Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004;6:409-21
  • Cornejo-Garcia JR, Benencia F, Courregas MC, Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of VEGF-A. Nat Med 2004;10:950-8
  • Grunewald M, Avraham I, Dor Y, VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-89
  • G-One A, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 2008;13:193-205
  • Mancuso P, Burlini A, Pruneri G, Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001;97:3658-61
  • Zhang H, Vakil V, Braunstein M, Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005;105:3286-94
  • Furstenberger G, von Moos R, Lucas R, Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 2006;94:524-31
  • Mancuso P, Colleoni M, Calleri A, Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 2006;108:452-9
  • Bertolini F, Paul S, Mancuso P, Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 2003;63:4342-6
  • Rafii S, Lyden D, Benezra R, Vascular and haemopoietic stem cells: novel targets for anti-angiogenesis therapy. Nat Rev Cancer 2002;2:826-35
  • Monestiroli S, Mancuso P, Burlini A, Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 2001;61:4341-4
  • Capillo M, Mancuso P, Gobbi A, Continuous infusion of endostatin inhibits differentiation, mobilization and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 2003;9:377-82
  • Taylor M, Rossler J, Geoerger B, High levels of circulating VEGFR2+ bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies. Clin Cancer Res 2009;15:4561-71
  • Vroling L, van der Veldt AA, de Haas RR, Increased numbers of small circulating endothelial cells in renal cell cancer patients treated with sunitinib. Angiogenesis 2009;12:69-79
  • Greenfield JP, Jin DK, Young LM, Surrogate markers predict angiogenic potential and survival in patients with glioblastoma multiforme. Neurosurgery 2009;64:819-26
  • Ranieri G, Roccaro AM, Vacca A, Ribatti D. Thymidine phosphorylase (platelet-derived endothelial cell growth factor) as a target for capecitabine: from biology to the bedside. Recent Pat Anticancer Drug Discov 2006;1:171-83
  • Passantino L, Patruno R, Valerio P, Thymidine phosphorylase profiles in nonmalignant and malignant pancreatic tissue. Potential therapeutic role of capecitabine on tumoral and endothelial cells and tumor-infiltrating macrophages. Immunopharmacol Immunotoxicol 2005;27:95-107
  • Ranieri G, Grammatica L, Patruno R, A possible role of thymidine phosphorylase expression and 5-fluorouracil increased sensitivity in oropharyngeal cancer patients. J Cell Mol Med 2007;11:362-8
  • Calabrese C, Poppleton H, Kocak M, A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69-82
  • Stupp R, Hegi ME. Targeting brain-tumor stem cells. Nat Biotechnol 2007;25:193-4
  • Ricci-Vitiani L, Pollini R, Biffoni M, Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010;468:824-8
  • Wang R, Chadalovada K, Wilshire J, Glioblastoma stem-like cells give rise to tumour endothelium. Nature 2010;468:829-33
  • Bao SD, Wu QL, Sathornsumetee S, Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006;66:7843-8
  • Deininger M, Buchdunger E, Druker BJ. The development of inatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005;105:2640-53
  • Holtz MS, Forman SJ, Bhatia R. Nonproliferating CML CD44+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 2005;19:1034-41
  • Jin L, Hope KJ, Zhai Q, Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12:1167-74
  • Tavor S, Petit I, Porozov S, CXCR4 regulates migration and development of human acute myelogeneous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004;64:2817-24
  • Piccirillo SG, Reynolds BA, Zanetti N, Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour infiltrating cells. Nature 2006;444:761-5
  • Hovinga KE, Shimizu F, Wang R, Inhibition of Notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 2010;28:1019-29
  • Spira AI, Carducci MA. Differentiation therapy. Curr Opin Pharmacol 2003;3:338-43
  • Camacho LH. Clinical application of retinoids in cancer medicine. J Biol Regul Homeost Agents 2003;17:98-114
  • Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia 2003;17:1454-63
  • Andreeff M, Jiang S, Zhang X, Expression of bcl-2-related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 1999;13:1881-92
  • Dobrucki LW, Sinusas AJ. Imaging angiogenesis. Curr Opin Biotech 2007;18:1-7
  • Ma X, Tian J, Yang X, Molecular imaging in tumor angiogenesis and relevant drug research. Int J Biomed Imaging 2011;2011:370701
  • Lu X, Wang RF. A concise review of current radiopharmaceuticals in tumor angiogenesis imaging. Curr Pharm Des 2012;18:1032-40
  • Mulder WJ, van der Schaft DW, Hautvast PA, Early in vivo assessment of angiostatic therapy efficacy by molecular MRI. FASEB J 2007;21:378-83
  • Klibanov AL. Ligand-carrying gas-filled microbubbles: ultrasound agents for targeted molecular imaging. Bioconjug Chem 2005;16:9-17
  • Bauer A, Bartl R, Pellengahr M, Neovascularization of bone marrow in patients with diffuse multiple myeloma: a correlative study of magnetic resonance imaging and histopathologic findings. Cancer 2004;101:2599-604
  • Shih TT, Tien HF, Liu CY, Functional MR imaging of tumor angiogenesis predicts outcome of patients with acute myeloid leukaemia. Leukemia 2006;20:357-62
  • Spear MA, LoRusso P, Mita A, Vascular disrupting agents (VDA) in oncology: advancing towards new therapeutic paradigms in the clinic. Curr Drug Targets 2011;12:2009-15
  • Hollbecque A, Massard C, Soria JC. Vascular disrupting agents: a delicate balance between efficacy and side effects. Curr Opin Oncol 2012;24:305-15
  • Sergeeva A, Kolonin M G, Molldrem JJ, Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006;58:1622-54
  • Pastorino F, Brignole C, Marimpietri D, Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res 2003;63:7400-9
  • Curnis F, Arrigoni G, Sacchi A, Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 2002;62:867-74
  • Corti A, Curnis F. Tumor vasculature targeting through NGR peptide-based drug delivery systems. Curr Pharm Biotechnol 2011;12:1128-34
  • O'Connell PJ, Gerkis V, d'Apice AJ. Variable O-glycosylation of CD13 (aminopeptidase N). J Biol Chem 1991;266:4593-7
  • Colombo G, Curnis F, De Mori GM, Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 2002;277:47891-7
  • Levchenko TS, Hartner WC, Torchillin VP. Liposomes for cardiovascular targeting. Ther Deliv 2012;3:501-14
  • Klement G, Baruchel S, Rak J, Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000;105:R15-24
  • Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7:987-9
  • Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nat Med 1998;4:655-7
  • Pastorino F, Brignole C, Di Paolo D, Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 2006;66:10073-82
  • Pastorino F, Di Paolo D, Piccardi F, Enhanced antitumor efficacy of clinical-grade vasculature-targeted liposomal doxorubicin. Clin Cancer Res 2008;14:7320-9
  • Garde SV, Forte AJ, Ge M, Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects. Anticancer Drugs 2007;18:1189-200
  • Gabizon A, Isacson R, Rosengarten O, An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 2008;61:695-702
  • Allen TM, Cheng WW, Hare JI, Laginha KM. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer Agents Med Chem 2006;6:513-23
  • Parhi R, Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. Curr Drug Discov Technol 2012;9:2-16
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2:750-63
  • Sapra P, Allen TM. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 2002;62:7190-4
  • Taatjes DJ, Koch TH. Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells. Curr Med Chem 2001;8:15-29
  • Elayadi AN, Samli KN, Prudkin L, A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for non small cell lung cancer. Cancer Res 2007;67:5889-95
  • Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature 1996;380:364-6
  • Staquicini FI, Sidman RL, Arap W, Phage display technology for stem cell delivery and systemic therapy. Adv Drug Deliv Rev 2010;62:1213-16
  • Li L, Wartchow CA, Danthi SN, A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Inter J Radiation Oncol Biol Phys 2004;58:1215-27
  • Mc Carthy JR, Bhaumik J, Karver MR, Targeted nanoagents for the detection of cancers. Mol Oncol 2010;4:511-28
  • Temming K, Schiffelers RM, Molema G, Kok RJ. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resistence Updates 2005;5:381-402
  • Arosio D, Casagrande C, Manzoni L. Integrin-mediated drug delivery in cancer and cardiovascular diseases with Peptide-functionalized nanoparticles. Curr Med Chem 2012;19:3128-51
  • Teicher BA. Antibody-drug conjugate targets. Curr Cancer Drug Targets 2009;9:982-1004
  • Pasquetto MV, Vecchia L, Covini D, Targeted drug delivery using immunoconjugates: principles and applications. J Immunother 2011;34:611-28
  • Casi G, Neri D. Antibody-drug conjugates: basic concepts, examples and future perspectives. J Control Release 2012;161:422-8
  • Adair JR, Howard PW, Hartley JA, Antibody-drug conjugates – a perfect synergy. Expert Opin Biol Ther 2012;12:1191-206
  • Lin K, Tibbitts J. Pharmakocinetics considerations for antibody drug conjugates. Pharm Res 2012;29:2354-66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.