739
Views
60
CrossRef citations to date
0
Altmetric
Reviews

Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia

&
Pages 139-155 | Published online: 11 Dec 2012

Bibliography

  • Davidson M, Reichenberg A, Rabinowitz J, Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 1999;156:1328-35
  • Cornblatt BA, Lenzenweger MF, Dworkin RH, Erlenmeyer-Kimling L. Childhood attentional dysfunctions predict social deficits in unaffected adults at risk for schizophrenia. Br J Psychiatry Suppl 1992(18):59-64
  • Mednick SA, Parnas J, Schulsinger F. The Copenhagen high-risk project, 1962 – 86. Schizophr Bull 1987;13:485-95
  • Nuechterlein KH. Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. J Abnorm Psychol 1983;92:4-28
  • Palmer BW, Heaton RK, Paulsen JS, Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology 1997;11:437-46
  • Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the "right stuff"? Schizophr Bull 2000;26:119-36
  • Picchioni MM, Murray RM. Schizophrenia. BMJ 2007;335:91-5
  • Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003;60:1187-92
  • Ripke S, Sanders AR, Kendler KS, Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011;43:969-76
  • Sullivan PF. Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat Med 2012;18:210-11
  • Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012;13(8):537-51
  • Lederbogen F, Kirsch P, Haddad L, City living and urban upbringing affect neural social stress processing in humans. Nature 2011;474:498-501
  • Tost H, Meyer-Lindenberg A. Puzzling over schizophrenia: schizophrenia, social environment and the brain. Nat Med 2012;18:211-13
  • Ban TA. Fifty years chlorpromazine: a historical perspective. Neuropsychiatr Dis Treat 2007;3:495-500
  • Levine JB, Martin G, Wilson A, Treistman SN. Clozapine inhibits isolated N-methyl-D-aspartate receptors expressed in xenopus oocytes in a subunit specific manner. Neurosci Lett 2003;346:125-8
  • Yokota K, Tatebayashi H, Matsuo T, The effects of neuroleptics on the GABA-induced Cl- current in rat dorsal root ganglion neurons: differences between some neuroleptics. Br J Pharmacol 2002;135:1547-55
  • Abbott A. Schizophrenia: the drug deadlock. Nature 2010;468:158-9
  • Wallace TL, Porter RHP. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol 2011;82:891-903
  • Evans DE, Drobes DJ. Nicotine self-medication of cognitive-attentional processing. Addict Biol 2009;14:32-42
  • Winterer G. Why do patients with schizophrenia smoke? Curr Opin Psychiatry 2010;23:112-19
  • Brunzell DH, McIntosh JM. Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology 2011;37:1134-43
  • Benowitz NL. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 2008;83:531-41
  • Benowitz NL. Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009;49:57-71
  • Rose JE, Mukhin AG, Lokitz SJ, Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc Natl Acad Sci USA 2010;107:5190-5
  • Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007;47:699-729
  • Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 2009;89:73-120
  • Lukas RJ, Changeux JP, Le Novere N, International union of pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 1999;51:397-401
  • Galzi JL, Bertrand D, Devillers-Thiery A, Functional significance of aromatic amino acids from three peptide loops of the alpha 7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Lett 1991;294:198-202
  • Corringer PJ, Bertrand S, Bohler S, Critical elements determining diversity in agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J Neurosci 1998;18:648-57
  • Brams M, Pandya A, Kuzmin D, A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. PLoS Biol 2011;9:e1001034
  • Billen B, Spurny R, Brams M, Molecular actions of smoking cessation drugs at alpha4beta2 nicotinic receptors defined in crystal structures of a homologous binding protein. Proc Natl Acad Sci USA 2012;109(23):9173-8
  • Celie PHN, van Rossum-Fikkert SE, van Dijk WJ, Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 2004;41:907-14
  • Palma E, Bertrand S, Binzoni T, Bertrand D. Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Physiol 1996;491(Pt 1):151-61
  • Couturier S, Bertrand D, Matter JM, A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 1990;5:847-56
  • Seguela P, Wadiche J, Dineley-Miller K, Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 1993;13:596-604
  • Agulhon C, Abitbol M, Bertrand D, Malafosse A. Localization of mRNA for CHRNA7 in human fetal brain. Neuroreport 1999;10:2223-7
  • Herber DL, Severance EG, Cuevas J, Biochemical and histochemical evidence of nonspecific binding of alpha7nAChR antibodies to mouse brain tissue. J Histochem Cytochem 2004;52:1367-76
  • Jones IW, Wonnacott S. Why doesn't nicotinic ACh receptor immunoreactivity knock out? Trends Neurosci 2005;28:343-5
  • Han Z-Y, Zoli M, Cardona A, Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin binding sites in the brain of macaca mulatta. J Comp Neurol 2003;461:49-60
  • Tribollet E, Bertrand D, Marguerat A, Raggenbass M. Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience 2004;124:405-20
  • Court JA, Martin-Ruiz C, Graham A, Perry E. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 2000;20:281-98
  • Gotti C, Clementi F, Fornari A, Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 2009;78(7):703-11
  • Rueter LE, Donnelly-Roberts DL, Curzon P, A-85380: a pharmacological probe for the preclinical and clinical investigation of the alphabeta neuronal nicotinic acetylcholine receptor. CNS Drug Rev 2006;12:100-12
  • Fabian-Fine R, Skehel P, Errington ML, Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 2001;21:7993-8003
  • Jones IW, Wonnacott S. Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 2004;24:11244-52
  • Dickinson JA, Kew JN, Wonnacott S. Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol 2008;74:348-59
  • Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 1997;53:603-25
  • Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 2011;71:155-65
  • Lagostena L, Trocme-Thibierge C, Morain P, Cherubini E. The partial alpha7 nicotine acetylcholine receptor agonist S 24795 enhances long-term potentiation at CA3-CA1 synapses in the adult mouse hippocampus. Neuropharmacology 2008;54:676-85
  • Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 2012;22:496-508
  • Muller-Dahlhaus F, Ziemann U, Classen J. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front Synaptic Neurosci 2010;2:34
  • Zorumski CF, Izumi Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev 2012;36:989-1000
  • Luby ED, Cohen BD, Rosenbaum G, Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry 1959;81:363-9
  • Malhotra AK, Pinals DA, Adler CM, Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997;17:141-50
  • Verhoog MB, Mansvelder HD. Presynaptic ionotropic receptors controlling and modulating the rules for spike timing-dependent plasticity. Neural Plast 2011;2011:870763
  • Fisher JL, Dani JA. Nicotinic receptors on hippocampal cultures can increase synaptic glutamate currents while decreasing the NMDA-receptor component. Neuropharmacology 2000;39:2756-69
  • Shen H, Kihara T, Hongo H, Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of alpha7 nicotinic receptors and internalization of NMDA receptors. Br J Pharmacol 2010;161:127-39
  • Adams CE, Yonchek JC, Zheng L, Altered hippocampal circuit function in C3H alpha7 null mutant heterozygous mice. Brain Res 2008;1194:138-45
  • Adams CE, Yonchek JC, Schulz KM, Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases. Neuroscience 2012;207:274-82
  • Stevens KE, Kem WR, Mahnir VM, Freedman R. Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl) 1998;136:320-7
  • Andrieux A, Salin PA, Vernet M, The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002;16:2350-64
  • Biton B, Bergis OE, Galli F, SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) binding and functional profile. Neuropsychopharmacology 2007;32:1-16
  • Bodnar AL, Cortes-Burgos LA, Cook KK, Discovery and structure-activity relationship of quinuclidine benzamides as agonists of alpha7 nicotinic acetylcholine receptors. J Med Chem 2005;48:905-8
  • Hunter BE, de Fiebre CM, Papke RL, A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett 1994;168:130-4
  • Wallace TL, Chiu G, Dao H, Modulation of Cholinergic Tone Impacts the Efficacy of RG3487/ MEM3454, A Novel, Nicotinic Alpha 7 Receptor Agonist. Society for Neuroscience Meeting; 2010. p. 236.1
  • Castner SA, Smagin GN, Piser TM, Immediate and sustained improvements in working memory after selective stimulation of alpha7 nicotinic acetylcholine receptors. Biol Psychiatry 2011;69:12-18
  • Prickaerts J, van Goethem NP, Chesworth R, EVP-6124, a novel and selective alpha7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of alpha7 nicotinic acetylcholine receptors. Neuropharmacology 2011;62:1099-110
  • Arendash GW, Sengstock GJ, Sanberg PR, Kem WR. Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 1995;674:252-9
  • Feuerbach D, Lingenhoehl K, Olpe HR, The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 2009;56:254-63
  • Wallace TL, Callahan PM, Tehim A, RG3487, a novel nicotinic alpha7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther 2010;336:242-253
  • Hajos M, Hurst RS, Hoffmann WE, The selective alpha7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats. J Pharmacol Exp Ther 2005;312:1213-22
  • Tietje KR, Anderson DJ, Bitner RS, Preclinical characterization of A-582941: a novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neurosci Ther 2008;14:65-82
  • Roncarati R, Scali C, Comery TA, Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther 2009;329:459-68
  • Pichat P, Bergis OE, Terranova J-P, SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 2007;32:17-34
  • Hashimoto K, Nishiyama S, Ohba H, [11C]CHIBA-1001 as a novel PET ligand for alpha7 nicotinic receptors in the brain: a PET study in conscious monkeys. PLoS One 2008;3:e3231
  • Hashimoto K, Fujita Y, Ishima T, Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of tropisetron: role of alpha7 nicotinic receptors. Eur J Pharmacol 2006;553:191-5
  • Leonard S, Freedman R. Genetics of chromosome 15q13-q14 in schizophrenia. Biol Psychiatry 2006;60:115-22
  • Hurst RS, Hajos M, Raggenbass M, A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 2005;25:4396-405
  • Thomsen MS, El-Sayed M, Mikkelsen JD. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats. PLoS One 2011;6:e27014
  • Leiser SC, Bowlby MR, Comery TA, Dunlop J. A cog in cognition: how the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol Ther 2009;122:302-11
  • Churchland MM, Cunningham JP, Kaufman MT, Neural population dynamics during reaching. Nature 2012;487:51-6
  • Mathewson KE, Gratton G, Fabiani M, To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci 2009;29:2725-32
  • Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 2010;464:903-7
  • Moran LV, Hong LE. High vs low frequency neural oscillations in schizophrenia. Schizophr Bull 2011;37:659-63
  • Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 2006;103:19878-83
  • Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 2006;137:1087-106
  • Steriade M, Datta S, Pare D, Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 1990;10:2541-59
  • Lu CB, Henderson Z. Nicotine induction of theta frequency oscillations in rodent hippocampus in vitro. Neuroscience 2010;166:84-93
  • Siok CJ, Rogers JA, Kocsis B, Hajos M. Activation of alpha7 acetylcholine receptors augments stimulation-induced hippocampal theta oscillation. Eur J Neurosci 2006;23:570-4
  • Song C, Murray TA, Kimura R, Role of alpha7-nicotinic acetylcholine receptors in tetanic stimulation-induced gamma oscillations in rat hippocampal slices. Neuropharmacology 2005;48:869-80
  • Flomen RH, Shaikh M, Walshe M, Association between the 2-bp deletion polymorphism in the duplicated version of the alpha7 nicotinic receptor gene and P50 sensory gating. Eur J Hum Genet 2012; Epub ahead of print
  • Martin LF, Leonard S, Hall M-H, Sensory gating and alpha-7 nicotinic receptor gene allelic variants in schizoaffective disorder, bipolar type. Am J Med Genet B Neuropsychiatr Genet 2007;144B:611-14
  • Araud T, Graw S, Berger R, The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of alpha7*nAChR function. Biochem Pharmacol 2011;82:904-14
  • de Lucas-Cerrillo AM, Maldifassi MC, Arnalich F, Function of partially duplicated human alpha77 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. J Biol Chem 2011;286:594-606
  • Araud T, Wonnacott S, Bertrand D. Associated proteins: the universal toolbox controlling ligand gated ion channel function. Biochem Pharmacol 2010;80:160-9
  • Chimienti F, Hogg RC, Plantard L, Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum Mol Genet 2003;12:3017-24
  • Higley MJ, Strittmatter SM. Neuroscience. Lynx for braking plasticity. Science 2010;330:1189-90
  • Morishita H, Miwa JM, Heintz N, Hensch TK. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 2010;330:1238-40
  • Miwa JM, Freedman R, Lester HA. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 2011;70:20-33
  • Chini B, Raimond E, Elgoyhen AB, Molecular cloning and chromosomal localization of the human alpha 7-nicotinic receptor subunit gene (CHRNA7). Genomics 1994;19:379-81
  • Gault J, Robinson M, Berger R, Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 1998;52:173-85
  • Sinkus ML, Lee MJ, Gault J, A 2-base pair deletion polymorphism in the partial duplication of the alpha7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia. Brain Res 2009;1291:1-11
  • Villiger Y, Szanto I, Jaconi S, Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. J Neuroimmunol 2002;126:86-98
  • Benfante R, Antonini RA, De Pizzol M, Expression of the alpha7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. J Neuroimmunol 2010;230(1–2):74-84
  • Steinlein OK, Mulley JC, Propping P, A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11:201-3
  • Steinlein OK, Bertrand D. Nicotinic receptor channelopathies and epilepsy. Pflugers Arch 2009;460(2):495-503
  • Steinlein OK. Animal models for autosomal dominant frontal lobe epilepsy: on the origin of seizures. Expert Rev Neurother 2010;10:1859-67
  • Steinlein OK, Hoda J-C, Bertrand S, Bertrand D. Mutations in familial nocturnal frontal lobe epilepsy might be associated with distinct neurological phenotypes. Seizure 2012;21:118-23
  • Rempel N, Heyers S, Engels H, The structures of the human neuronal nicotinic acetylcholine receptor beta2- and alpha3-subunit genes (CHRNB2 and CHRNA3). Hum Genet 1998;103:645-53
  • Stefansson H, Rujescu D, Cichon S, Large recurrent microdeletions associated with schizophrenia. Nature 2008;455:232-6
  • International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237-41
  • Magnusson A, Stordal E, Brodtkorb E, Steinlein O. Schizophrenia, psychotic illness and other psychiatric symptoms in families with autosomal dominant nocturnal frontal lobe epilepsy caused by different mutations. Psychiatr Genet 2003;13:91-5
  • Bertrand D, Elmslie F, Hughes E, The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol Dis 2005;20:799-804
  • Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 1995;38:22-33
  • Tanibuchi Y, Wu J, Toyohara J, Characterization of [(3)H]CHIBA-1001 binding to alpha7 nicotinic acetylcholine receptors in the brain from rat, monkey, and human. Brain Res 2010;1348:200-8
  • Toyohara J, Sakata M, Wu J, Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping alpha7 nicotinic receptors by positron emission tomography. Ann Nucl Med 2009;23:301-9
  • Toyohara J, Wu J, Hashimoto K. Recent development of radioligands for imaging alpha7 nicotinic acetylcholine receptors in the brain. Curr Top Med Chem 2010;10(15):1544-57
  • Liu Q, Huang Y, Xue F, A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 2009;29:918-29
  • Khiroug SS, Harkness PC, Lamb PW, Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol 2002;540:425
  • Murray TA, Bertrand D, Papke RL, alpha7beta2 nAChRs assemble and function, and are activated primarily via their alpha7-alpha7 Interfaces. Mol Pharmacol 2011;81:175-188
  • Wallace T, Porter R, Neveu E, Bertrand D. Effects of RG3487 at the a7b2 nicotinic acetylcholine receptor expressed in Xenopus oocytes. Biochem Pharmacol 2011;82:1026
  • Olincy A, Harris JG, Johnson LL, Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006;63:630-8
  • Tregellas JR, Tanabe J, Rojas DC, Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 2010;69(1):7-11
  • Freedman R, Olincy A, Buchanan RW, Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 2008;165:1040-7
  • O'Donnell CJ, Rogers BN, Bronk BS, Discovery of 4-(5-Methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo[3.2.2]nonane (CP-810,123), a novel alpha7 nicotinic acetylcholine receptor agonist for the treatment of cognitive disorders in schizophrenia: synthesis, SAR development, and in vivo efficacy in cognition models. J Med Chem 2009;53:1222-237
  • Wishka DG, Walker DP, Yates KM, Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure–activity relationship. J Med Chem 2006;49:4425-36
  • Walker DP, Wishka DG, Piotrowski DW, Design, synthesis, structure-activity relationship, and in vivo activity of azabicyclic aryl amides as alpha7 nicotinic acetylcholine receptor agonists. Bioorg Med Chem 2006;14:8219-48
  • Hosford D, Dunbar G, Lieberman J, Segreti A. The alpha7 neuronal nicotinic receptor (NNR) modulator TC-5619 had beneficial effects and was generally well tolerated in a phase 2 trial in cognitive dysfunction in schizophrenia (CDS) [Poster #48]. ACNP Annual Meeting; Waikoloa, Hawaii; 2011
  • Shiina A, Shirayama Y, Niitsu T, A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann Gen Psychiatry 2010;9:27
  • Krause RM, Buisson B, Bertrand S, Ivermectin: a positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 1998;53:283-94
  • Timmermann DB, Grønlien JH, Kohlhaas KL, An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther 2007;323:294-307
  • Bertrand D, Bertrand S, Cassar S, Positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor: ligand interactions with distinct binding sites and evidence for a prominent role of the M2-M3 segment. Mol Pharmacol 2008;74:1407-16
  • Winterer G, Gallinat J, Brinkmeyer J, Allosteric alpha-7 nicotinic receptor modulation and P50 sensory gating in schizophrenia: a proof-of-mechanism study. Neuropharmacology 2012;64(1):197-204
  • Othman AA, Lenz RA, Zhang J, Single- and multiple-dose pharmacokinetics, safety and tolerability of the selective {alpha}7 neuronal nicotinic receptor agonist, ABT-107, in healthy human volunteers. J Clin Pharmacol 2010;51:512-526
  • Chailangkarn T, Acab A, Muotri AR. Modeling neurodevelopmental disorders using human neurons. Curr Opin Neurobiol 2012; [Epub ahead of print]
  • Davis RP, Casini S, van den Berg CW, Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 2012;125:3079-91
  • Brennand KJ, Simone A, Jou J, Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011;473:221-5
  • Giraudat J, Dennis M, Heidmann T, Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]chlorpromazine. Proc Natl Acad Sci USA 1986;83:2719-23
  • Revah F, Galzi JL, Giraudat J, The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci USA 1990;87:4675-9
  • Chiara DC, Hamouda AK, Ziebell MR, [(3)H]chlorpromazine photolabeling of the torpedo nicotinic acetylcholine receptor identifies two state-dependent binding sites in the ion channel. Biochemistry 2009;48:10066-77
  • Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 2005;346:967-89
  • Hilf RJC, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 2008;452:375-9
  • Bocquet N, Nury H, Baaden M, X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 2009;457:111-14
  • Corringer P-J, Baaden M, Bocquet N, Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol 2010;588:565-72
  • Singhal SK, Zhang L, Morales M, Oz M. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors. Neuropharmacology 2007;52:387-94
  • Grinevich VP, Papke RL, Lippiello PM, Bencherif M. Atypical antipsychotics as noncompetitive inhibitors of alpha4beta2 and alpha7 neuronal nicotinic receptors. Neuropharmacology 2009;57:183-91
  • Ashoor A, Lorke D, Nurulain SM, Effects of phenothiazine-class antipsychotics on the function of alpha7-nicotinic acetylcholine receptors. Eur J Pharmacol 2011;673:25-32
  • Addy N, Levin ED. Nicotine interactions with haloperidol, clozapine and risperidone and working memory function in rats. Neuropsychopharmacology 2002;27:534-41
  • Simosky JK, Freedman R, Stevens KE. Olanzapine improves deficient sensory inhibition in DBA/2 mice. Brain Res 2008;1233:129-36
  • Simosky JK, Stevens KE, Adler LE, Freedman R. Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl) 2003;165:386-96
  • Stip E. Cognition, schizophrenia and the effect of antipsychotics. Encephale 2006;32:341-350
  • Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses 2010;4:56-73
  • Autry AE, Adachi M, Nosyreva E, NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011;475:91-5
  • Berman RM, Cappiello A, Anand A, Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47:351-4
  • Kapur S, Seeman P. Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D2 receptor. Biol Psychiatry 2001;49:954-7
  • Krystal JH, D'Souza DC. Comment on "Ketamine has equal affinity for NMDA receptors and the high-affinity state of the dopamine D(2) receptor". Biol Psychiatry 2001;50:555-6
  • Coates KM, Flood P. Ketamine and its preservative, benzethonium chloride, both inhibit human recombinant alpha7 and alpha4beta2 neuronal nicotinic acetylcholine receptors in Xenopus oocytes. Br J Pharmacol 2001;134:871-9
  • Yamakura T, Chavez-Noriega LE, Harris RA. Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine. Anesthesiology 2000;92:1144-53
  • Ho KK, Flood P. Single amino acid residue in the extracellular portion of transmembrane segment 2 in the nicotinic alpha7 acetylcholine receptor modulates sensitivity to ketamine. Anesthesiology 2004;100:657-62
  • Jentsch JD, Elsworth JD, Redmond DE, Roth RH. Phencyclidine increases forebrain monoamine metabolism in rats and monkeys: modulation by the isomers of HA966. J Neurosci 1997;17:1769-75
  • Tsukada H, Nishiyama S, Fukumoto D, Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology 2005;30:1861-9
  • Buccafusco JJ, Terry AV. A reversible model of the cognitive impairment associated with schizophrenia in monkeys: potential therapeutic effects of two nicotinic acetylcholine receptor agonists. Biochem Pharmacol 2009;78:852-62
  • Cannon CE, Puri V, Vivian JA, The nicotinic alpha7 receptor agonist GTS-21 improves cognitive performance in ketamine impaired rhesus monkeys. Neuropharmacology 2012;64(1):191-6
  • Terry AV, Gearhart DA, Mahadik SP, Chronic exposure to typical or atypical antipsychotics in rodents: temporal effects on central alpha7 nicotinic acetylcholine receptors. Neuroscience 2005;136:519-29
  • Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 1999;289:1545-52
  • Molinari EJ, Delbono O, Messi ML, Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. Eur J Pharmacol 1998;347:131-9
  • Buisson B, Bertrand D. Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. J Neurosci 2001;21:1819-29
  • Cho C-H, Song W, Leitzell K, Rapid upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation. J Neurosci 2005;25:3712-23
  • Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 2009;78:756-65
  • Govind AP, Walsh H, Green WN. Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms. J Neurosci 2012;32:2227-38
  • AhnAllen CG. The role of the alpha7 nicotinic receptor in cognitive processing of persons with schizophrenia. Curr Opin Psychiatry 2012;25:103-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.