405
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Targeting lipid sensing in the central nervous system: new therapy against the development of obesity and type 2 diabetes

, , &
Pages 545-555 | Published online: 04 Feb 2013

Bibliography

  • Molavi B, Rasouli N, Kern PA. The prevention and treatment of metabolic syndrome and high-risk obesity. Curr Opin Cardiol 2006;21(5):479-85
  • Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008;29(1):42-61
  • Lee Y, Hirose H, Ohneda M, Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA 1994;91(23):10878-82
  • Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes Relat Metab Disord 2004;28(Suppl 4):S22-8
  • Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord 2000;24(Suppl 4):S28-32
  • Virtue S, Vidal-Puig A. It's not how fat you are, it's what you do with it that counts. PLoS Biol 2008;6(9):e237
  • Zhou YT, Grayburn P, Karim A, Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 2000;97(4):1784-9
  • Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006;444(7121):847-53
  • Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 2010;209(1):1-12
  • Migrenne S, Cruciani-Guglielmacci C, Kang L, Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 2006;55:S139-S44
  • Hayashi T, Saito A, Okuno S, Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 2005;25(1):41-53
  • Shimazawa M, Inokuchi Y, Ito Y, Involvement of ER stress in retinal cell death. Mol Vis 2007;13:578-87
  • Watkins PA, Hamilton JA, Leaf A, Brain uptake and utilization of fatty acids: applications to peroxisomal biogenesis diseases. J Mol Neurosci 2001;16(2-3):87-92; discussion 151-7
  • Edmond J. Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 2001;16(2-3):181-93; discussion 215-21
  • Rapoport SI, Chang MC, Spector AA. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 2001;42(5):678-85
  • Smith QR, Nagura H. Fatty acid uptake and incorporation in brain: studies with the perfusion model. J Mol Neurosci 2001;16(2-3):167-72; discussion 215-21
  • Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci 2005;8(5):579-84
  • Qi K, Hall M, Deckelbaum RJ. Long-chain polyunsaturated fatty acid accretion in brain. Curr Opin Clin Nutr Metab Care 2002;5(2):133-8
  • Rapoport SI. In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 2001;16(2-3):243-61; discussion 79-84
  • Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: distribution of [14C]palmitate between oxidative and synthetic pathways. J Neurochem 1987;49(5):1507-14
  • Rapoport SI. In vivo labeling of brain phospholipids by long-chain fatty acids: relation to turnover and function. Lipids 1996;31(Suppl):S97-101
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7(1):41-53
  • Wang H, Astarita G, Taussig MD, Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab 2011;13(1):105-13
  • Le Foll C, Irani BG, Magnan C, Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 2009;297(3):R655-64
  • Campfield LA, Smith FJ, Burn P. The OB protein (leptin) pathway--a link between adipose tissue mass and central neural networks. Horm Metab Res 1996;28(12):619-32
  • Mayer J. Regulation of energy intake and the body weight: the glucostatic theory and the lipostatic hypothesis. Ann NY Acad Sci 1955;63(1):15-43
  • Oomura Y, Nakamura T, Sugimori M, Yamada Y. Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav 1975;14(04):483-6
  • Wang R, Cruciani-Guglielmacci C, Migrenne S, Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol 2006;95(3):1491-8
  • Clement L, Cruciani-Guglielmacci C, Magnan C, Intracerebroventricular infusion of a triglyceride emulsion leads to both altered insulin secretion and hepatic glucose production in rats. Pflugers Arch 2002;445(3):375-80
  • Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab 2010;299(4):E633-9
  • Obici S, Feng Z, Morgan K, Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002;51(2):271-5
  • Obici S, Feng Z, Arduini A, Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 2003;9(6):756-61
  • Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes (Lond) 2011;35(3):336-44
  • Lam TK, Pocai A, Gutierrez-Juarez R, Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 2005;11(3):320-7
  • Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem 2004;279(30):31139-48
  • Magnan C, Collins S, Berthault MF, Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest 1999;103(3):413-19
  • Cruciani-Guglielmacci C, Hervalet A, Douared L, Beta oxidation in the brain is required for the effects of non-esterified fatty acids on glucose-induced insulin secretion in rats. Diabetologia 2004;47(11):2032-8
  • Luquet S, Magnan C. The central nervous system at the core of the regulation of energy homeostasis. Front Biosci (Schl Ed) 2009;1:448-65
  • Pocai A, Lam TK, Obici S, Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 2006;116(4):1081-91
  • Levin BE, Triscari J, Sullivan AC. Altered sympathetic activity during development of diet-induced obesity in rat. Am J Physiol 1983;244(3):R347-55
  • Young JB, Walgren MC. Differential effects of dietary fats on sympathetic nervous system activity in the rat. Metabolism 1994;43(1):51-60
  • Scherrer U, Owlya R, Lepori M. Body fat and sympathetic nerve activity. Cardiovasc Drugs Ther 1996;10(Suppl 1):215-22
  • Peterson HR, Rothschild M, Weinberg CR, Body fat and the activity of the autonomic nervous system. N Engl J Med 1988;318(17):1077-83
  • Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci USA 2003;100(22):12624-9
  • Loftus TM, Jaworsky DE, Frehywot GL, Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000;288(5475):2379-81
  • Lopez M, Lelliott CJ, Tovar S, Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes 2006;55(5):1327-36
  • Lane MD, Wolfgang M, Cha SH, Dai Y. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. Int J Obes (Lond) 2008;32(Suppl 4):S49-54
  • Gao S, Lane MD. Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc Natl Acad Sci USA 2003;100(10):5628-33
  • Shimokawa T, Kumar MV, Lane MD. Effect of a fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci USA 2002;99(1):66-71
  • Tu Y, Thupari JN, Kim EK, C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology 2005;146(1):486-93
  • Lopez M, Lage R, Saha AK, Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 2008;7(5):389-99
  • Minokoshi Y, Alquier T, Furukawa N, AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004;428(6982):569-74
  • Claret M, Smith MA, Batterham RL, AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 2007;117(8):2325-36
  • Jo YH, Su Y, Gutierrez-Juarez R, Chua S Jr. Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol 2009;101(5):2305-16
  • Gaillard D, Laugerette F, Darcel N, The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 2008;22(5):1458-68
  • Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999;1451(1):1-16
  • Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ 2005;12(Suppl 2):1542-52
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132(1):27-42
  • Kaushik S, Rodriguez-Navarro JA, Arias E, Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 2011;14(2):173-83
  • Coupe B, Ishii Y, Dietrich MO, Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab 2012;15(2):247-55
  • Kaushik S, Arias E, Kwon H, Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 2012;13(3):258-65
  • Quan W, Kim HK, Moon EY, Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 2012;153(4):1817-26
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444(7121):860-7
  • Zhang X, Zhang G, Zhang H, Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008;135(1):61-73
  • Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 2008;3:399-425
  • Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004;11(4):381-9
  • Ron D, Hubbard SR. How IRE1 reacts to ER stress. Cell 2008;132(1):24-6
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8(7):519-29
  • Hosoi T, Sasaki M, Miyahara T, Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol 2008;74(6):1610-19
  • Ozcan L, Ergin AS, Lu A, Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009;9(1):35-51
  • Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010;140(6):900-17
  • Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem 2011;286(37):32324-32
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443(7113):787-95
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120(4):483-95
  • Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci 2004;27(10):601-6
  • Benani A, Troy S, Carmona MC, Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 2007;56(1):152-60
  • Price N, van der Leij F, Jackson V, A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics 2002;80(4):433-42
  • Wolfgang MJ, Kurama T, Dai Y, The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci USA 2006;103(19):7282-7
  • Sierra AY, Gratacos E, Carrasco P, CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem 2008;283(11):6878-85
  • Gao S, Zhu G, Gao X, Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proc Natl Acad Sci USA 2011;108(23):9691-6
  • Benoit SC, Kemp CJ, Elias CF, Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 2009;119(9):2577-89
  • Milanski M, Degasperi G, Coope A, Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 2009;29(2):359-70
  • Wolfgang MJ, Cha SH, Sidhaye A, Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc Natl Acad Sci USA 2007;104(49):19285-90
  • Dowell P, Hu Z, Lane MD. Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. Annu Rev Biochem 2005;74:515-34
  • Escartin C, Pierre K, Colin A, Activation of astrocytes by CNTF induces metabolic plasticity and increases resistance to metabolic insults. J Neurosci 2007;27(27):7094-104
  • Sakaguchi T, Bray GA. Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves. Proc Natl Acad Sci USA 1987;84(7):2012-14
  • Unger RH. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie 2005;87(1):57-64
  • Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic beta-cell function and dysfunction. Islets 2012;4(3):177-87
  • Moraes JC, Coope A, Morari J, High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 2009;4(4):e5045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.