874
Views
28
CrossRef citations to date
0
Altmetric
Reviews

A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma

, PhD & , MD PhD
Pages 607-623 | Published online: 25 Feb 2013

Bibliography

  • Anderson JL, Denny CT, Tap WD, Federman N. Pediatric sarcomas: translating molecular pathogenesis of disease to novel therapeutic possibilities. Pediatr Res 2012;72(2):112-21
  • Demicco EG, Maki RG, Lev DC, Lazar AJ. New therapeutic targets in soft tissue sarcoma. Adv Anat Pathol 2012;19(3):170-80
  • Teicher BA. Searching for molecular targets in sarcoma. Biochem Pharmacol 2012;84(1):1-10
  • Barretina J, Taylor BS, Banerji S, Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010;42(8):715-21
  • Taylor BS, Barretina J, Maki RG, Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 2011;11(8):541-57
  • Xia SJ, Barr FG. Chromosome translocations in sarcomas and the emergence of oncogenic transcription factors. Eur J Cancer 2005;41(16):2513-27
  • Slater O, Shipley J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol 2007;60(11):1187-94
  • McArthur GA, Demetri GD, van Oosterom A, Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: imatinib Target Exploration Consortium Study B2225. J Clin Oncol 2005;23(4):866-73
  • Mok GF, Sweetman D. Many routes to the same destination: lessons from skeletal muscle development. Reproduction 2011;141(3):301-12
  • Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 2005;435(7044):948-53
  • Tremblay P, Gruss P. Pax: genes for mice and men. Pharmacol Ther 1994;61(1-2):205-26
  • Li CG, Eccles MR. PAX genes in cancer; friends or foes? Front Genet 2012;3:6
  • Kuang S, Charge SB, Seale P, Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 2006;172(1):103-13
  • Relaix F, Montarras D, Zaffran S, Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 2006;172(1):91-102
  • Zhang Y, Gan B, Liu D, Paik JH. FoxO family members in cancer. Cancer Biol Ther 2011;12(4):253-9
  • Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011;1813(11):1978-86
  • Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 2011;1813(11):1938-45
  • Galili N, Davis RJ, Fredericks WJ, Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;5(3):230-5
  • Davis RJ, D'Cruz CM, Lovell MA, Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 1994;54(11):2869-72
  • Davis RJ, Bennicelli JL, Macina RA, Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma. Hum Mol Genet 1995;4(12):2355-62
  • Xia SJ, Rajput P, Strzelecki DM, Barr FG. Analysis of genetic events that modulate the oncogenic and growth suppressive activities of the PAX3-FKHR fusion oncoprotein. Lab Invest 2007;87(4):318-25
  • Avirneni-Vadlamudi U, Galindo KA, Endicott TR, Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma. J Clin Invest 2012;122(1):403-7
  • Linardic CM, Downie DL, Qualman S, Genetic modeling of human rhabdomyosarcoma. Cancer Res 2005;65(11):4490-5
  • Linardic CM, Naini S, Herndon JE II, The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res 2007;67(14):6691-9
  • Ren YX, Finckenstein FG, Abdueva DA, Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res 2008;68(16):6587-97
  • Naini S, Etheridge KT, Adam SJ, Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008;68(23):9583-8
  • Keller C, Arenkiel BR, Coffin CM, Alveolar rhabdomyosarcomas in conditional Pax3:fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004;18(21):2614-26
  • Keller C, Hansen MS, Coffin CM, Capecchi MR. Pax3:fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 2004;18(21):2608-13
  • Keller C, Capecchi MR. New genetic tactics to model alveolar rhabdomyosarcoma in the mouse. Cancer Res 2005;65(17):7530-2
  • Nishijo K, Chen QR, Zhang L, Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma. Cancer Res 2009;69(7):2902-11
  • Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001;20(40):5736-46
  • Barr FG, Womer R. Rhabdomyosarcoma. In: Orkin SH, Fisher DE, Look AT, Lux SE, Ginsburg D, Nathan DG, editors. Oncology of infancy and childhood. Saunders; Philadelphia: 2009. p. 743-828
  • De Giovanni C, Landuzzi L, Nicoletti G, Molecular and cellular biology of rhabdomyosarcoma. Future Oncol 2009;5(9):1449-75
  • Ognjanovic S, Linabery AM, Charbonneau B, Ross JA. Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer 2009;115(18):4218-26
  • Huh WW, Skapek SX. Childhood rhabdomyosarcoma: new insight on biology and treatment. Curr Oncol Rep 2010;12(6):402-10
  • Xia SJ, Pressey JG, Barr FG. Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther 2002;1(2):97-104
  • Wachtel M, Runge T, Leuschner I, Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol 2006;24(5):816-22
  • Mercado GE, Barr FG. Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances. Curr Mol Med 2007;7(1):47-61
  • Scrable HJ, Witte DP, Lampkin BC, Cavenee WK. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 1987;329(6140):645-7
  • Scrable H, Cavenee W, Ghavimi F, A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 1989;86(19):7480-4
  • Besnard-Guerin C, Newsham I, Winqvist R, Cavenee WK. A common region of loss of heterozygosity in Wilms' tumor and embryonal rhabdomyosarcoma distal to the D11S988 locus on chromosome 11p15.5. Hum Genet 1996;97(2):163-70
  • Visser M, Sijmons C, Bras J, Allelotype of pediatric rhabdomyosarcoma. Oncogene 1997;15(11):1309-14
  • Feinberg AP. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res 1999;59(7 Suppl):1743s-6s
  • Smith AC, Choufani S, Ferreira JC, Weksberg R. Growth regulation, imprinted genes, and chromosome 11p15.5. Pediatr Res 2007;61(5 Pt 2):43R-7R
  • Sorensen PH, Lynch JC, Qualman SJ, PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 2002;20(11):2672-9
  • Barr FG, Galili N, Holick J, Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3(2):113-17
  • Barr FG, Smith LM, Lynch JC, Examination of gene fusion status in archival samples of alveolar rhabdomyosarcoma entered on the Intergroup Rhabdomyosarcoma Study-III trial: a report from the Children's Oncology Group. J Mol Diagn 2006;8(2):202-8
  • Sumegi J, Streblow R, Frayer RW, Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes, chromosomes & cancer 2010;49(3):224-36
  • Barr FG, Qualman SJ, Macris MH, Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res 2002;62(16):4704-10
  • Davicioni E, Anderson MJ, Finckenstein FG, Molecular classification of rhabdomyosarcoma–genotypic and phenotypic determinants of diagnosis: a report from the Children's Oncology Group. Am J Pathol 2009;174(2):550-64
  • Williamson D, Missiaglia E, de Reynies A, Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 2010;28(13):2151-8
  • Davis RJ, Barr FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997;94(15):8047-51
  • Bennicelli JL, Edwards RH, Barr FG. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1996;93(11):5455-9
  • Bennicelli JL, Advani S, Schafer BW, Barr FG. PAX3 and PAX7 exhibit conserved cis-acting transcription repression domains and utilize a common gain of function mechanism in alveolar rhabdomyosarcoma. Oncogene 1999;18(30):4348-56
  • Scheidler S, Fredericks WJ, Rauscher FJ III, The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci USA 1996;93(18):9805-9
  • Lam PY, Sublett JE, Hollenbach AD, Roussel MF. The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 1999;19(1):594-601
  • Cao Y, Wang C. The COOH-terminal transactivation domain plays a key role in regulating the in vitro and in vivo function of Pax3 homeodomain. J Biol Chem 2000;275(13):9854-62
  • Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 2008;270(1):10-18
  • Fredericks WJ, Ayyanathan K, Herlyn M, An engineered PAX3-KRAB transcriptional repressor inhibits the malignant phenotype of alveolar rhabdomyosarcoma cells harboring the endogenous PAX3-FKHR oncogene. Mol Cell Biol 2000;20(14):5019-31
  • Hettmer S, Wagers AJ. Muscling in: uncovering the origins of rhabdomyosarcoma. Nat Med 2010;16(2):171-3
  • Xia SJ, Holder DD, Pawel BR, High expression of the PAX3-FKHR oncoprotein is required to promote tumorigenesis of human myoblasts. Am J Pathol 2009;175(6):2600-8
  • Xia SJ, Barr FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004;23(41):6864-71
  • Duan F, Smith LM, Gustafson DM, Genomic and clinical analysis of fusion gene amplification in rhabdomyosarcoma: a report from the Children's Oncology Group. Genes, chromosomes & cancer 2012;51(7):662-74
  • Kikuchi K, Tsuchiya K, Otabe O, Effects of PAX3-FKHR on malignant phenotypes in alveolar rhabdomyosarcoma. Biochem Biophys Res Commun 2008;365(3):568-74
  • Bernasconi M, Remppis A, Fredericks WJ, Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 1996;93(23):13164-9
  • Ebauer M, Wachtel M, Niggli FK, Schafer BW. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 2007;26(51):7267-81
  • Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul Syst Biol 2008;2:275-95
  • Asami S, Chin M, Shichino H, Treatment of Ewing's sarcoma using an antisense oligodeoxynucleotide to regulate the cell cycle. Biol Pharm Bull 2008;31(3):391-4
  • Elhamess H, Bertrand JR, Maccario J, Antitumor vectorized oligonucleotides in a model of ewing sarcoma: unexpected role of nanoparticles. Oligonucleotides 2009;19(3):255-64
  • Zeng FY, Cui J, Liu L, Chen T. PAX3-FKHR sensitizes human alveolar rhabdomyosarcoma cells to camptothecin-mediated growth inhibition and apoptosis. Cancer Lett 2009;284(2):157-64
  • Roeb W, Boyer A, Cavenee WK, Arden KC. Guilt by association: PAX3-FOXO1 regulates gene expression through selective destabilization of the EGR1 transcription factor. Cell Cycle 2008;7(7):837-41
  • Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 2010;11(1):9-22
  • Yuan Z, Becker EB, Merlo P, Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 2008;319(5870):1665-8
  • Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005;24(50):7410-25
  • Dejana E, Taddei A, Randi AM. Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim Biophys Acta 2007;1775(2):298-312
  • Cabodi S, Morello V, Masi A, Convergence of integrins and EGF receptor signaling via PI3K/Akt/FoxO pathway in early gene Egr-1 expression. J Cell Physiol 2009;218(2):294-303
  • del Peso L, Gonzalez VM, Hernandez R, Regulation of the forkhead transcription factor FKHR, but not the PAX3- FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene 1999;18(51):7328-33
  • Jothi M, Nishijo K, Keller C, Mal AK. AKT and PAX3-FKHR cooperation enforces myogenic differentiation blockade in alveolar rhabdomyosarcoma cell. Cell Cycle 2012;11(5):895-908
  • Cen L, Hsieh FC, Lin HJ, PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound. Br J Cancer 2007;97(6):785-91
  • Corry GN, Hendzel MJ, Underhill DA. Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome. Hum Mol Genet 2008;17(12):1825-37
  • Corry GN, Raghuram N, Missiaen KK, The PAX3 paired domain and homeodomain function as a single binding module in vivo to regulate subnuclear localization and mobility by a mechanism that requires base-specific recognition. J Mol Biol 2010;402(1):178-93
  • Dietz KN, Miller PJ, Iyengar AS, Identification of serines 201 and 209 as sites of Pax3 phosphorylation and the altered phosphorylation status of Pax3-FOXO1 during early myogenic differentiation. Int J Biochem Cell Biol 2011;43(6):936-45
  • Dietz KN, Miller PJ, Hollenbach AD. Phosphorylation of serine 205 by the protein kinase CK2 persists on Pax3-FOXO1, but not Pax3, throughout early myogenic differentiation. Biochemistry 2009;48(49):11786-95
  • Iyengar AS, Loupe JM, Miller PJ, Hollenbach AD. Identification of CK2 as the kinase that phosphorylates Pax3 at Ser209 in early myogenic differentiation. Biochem Biophys Res Commun 2012;428(1):24-30
  • Amstutz R, Wachtel M, Troxler H, Phosphorylation regulates transcriptional activity of PAX3/FKHR and reveals novel therapeutic possibilities. Cancer Res 2008;68(10):3767-76
  • Goletz TJ, Mackall CL, Berzofsky JA, Helman LJ. Molecular alterations in pediatric sarcomas: potential targets for immunotherapy. Sarcoma 1998;2(2):77-87
  • Mackall C, Berzofsky J, Helman LJ. Targeting tumor specific translocations in sarcomas in pediatric patients for immunotherapy. Clin Orthop 2000(373):25-31
  • Dagher R, Long LM, Read EJ, Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. Med Pediatr Oncol 2002;38(3):158-64
  • van den Broeke LT, Pendleton CD, Mackall C, Identification and epitope enhancement of a PAX-FKHR fusion protein breakpoint epitope in alveolar rhabdomyosarcoma cells created by a tumorigenic chromosomal translocation inducing CTL capable of lysing human tumors. Cancer Res 2006;66(3):1818-23
  • Rodeberg DA, Nuss RA, Heppelmann CJ, Celis E. Lack of effective T-lymphocyte response to the PAX3/FKHR translocation area in alveolar rhabdomyosarcoma. Cancer immunology, immunotherapy : CII 2005;54(6):526-34
  • Mackall CL, Rhee EH, Read EJ, A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res 2008;14(15):4850-8
  • Barber TD, Barber MC, Tomescu O, Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma. Genomics 2002;79(3):278-84
  • Begum S, Emami N, Cheung A, Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 2005;24(11):1860-72
  • Bai Y, Li J, Fang B, Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res 2012;72(10):2501-11
  • Shukla N, Ameur N, Yilmaz I, Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012;18(3):748-57
  • Lae M, Ahn EH, Mercado GE, Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 2007;212(2):143-51
  • Khan J, Bittner ML, Saal LH, cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 1999;96(23):13264-9
  • Missiaglia E, Selfe J, Hamdi M, Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: an approach to identify candidate genes involved in tumor development. Genes, chromosomes & cancer 2009;48(6):455-67
  • Beck AH, West RB, van de Rijn M. Gene expression profiling for the investigation of soft tissue sarcoma pathogenesis and the identification of diagnostic, prognostic, and predictive biomarkers. Virchows Arch 2010;456(2):141-51
  • Nielsen TO, West RB. Translating gene expression into clinical care: sarcomas as a paradigm. J Clin Oncol 2010;28(10):1796-805
  • Marics I, Padilla F, Guillemot JF, FGFR4 signaling is a necessary step in limb muscle differentiation. Development 2002;129(19):4559-69
  • Zhao P, Hoffman EP. Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 2004;229(2):380-92
  • Zhao P, Caretti G, Mitchell S, Fgfr4 is required for effective muscle regeneration in vivo. Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. J Biol Chem 2006;281(1):429-38
  • Lagha M, Kormish JD, Rocancourt D, Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev 2008;22(13):1828-37
  • Khan J, Wei JS, Ringner M, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001;7(6):673-9
  • Baird K, Davis S, Antonescu CR, Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 2005;65(20):9226-35
  • Davicioni E, Finckenstein FG, Shahbazian V, Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 2006;66(14):6936-46
  • Yu SJ, Zheng L, Ladanyi M, Sp1-mediated transcriptional control of fibroblast growth factor receptor 4 in sarcomas of skeletal muscle lineage. Clin Cancer Res 2004;10(19):6750-8
  • Taylor JGt, Cheuk AT, Tsang PS, Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest 2009;119(11):3395-407
  • Marshall AD, van der Ent MA, Grosveld GC. PAX3-FOXO1 and FGFR4 in alveolar rhabdomyosarcoma. Mol Carcinog 2012;51(10):807-15
  • Cao L, Yu Y, Bilke S, Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res 2010;70(16):6497-508
  • Crose LE, Etheridge KT, Chen C, FGFR4 blockade exerts distinct antitumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma. Clin Cancer Res 2012;18(14):3780-90
  • Weinstein IB. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 2002;297(5578):63-4
  • Weinstein IB, Joe A. Oncogene addiction. Cancer Res 2008;68(9):3077-80; discussion 80
  • Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009;136(5):823-37
  • French DM, Lin BC, Wang M, Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One 2012;7(5):e36713
  • Ezzat S, Zheng L, Zhu XF, Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002;109(1):69-78
  • Ding L, Getz G, Wheeler DA, Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455(7216):1069-75
  • Roidl A, Foo P, Wong W, The FGFR4 Y367C mutant is a dominant oncogene in MDA-MB453 breast cancer cells. Oncogene 2010;29(10):1543-52
  • Tateno T, Asa SL, Zheng L, The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet 2011;7(12):e1002400
  • Jain VK, Turner NC. Challenges and opportunities in the targeting of fibroblast growth factor receptors in breast cancer. Breast Cancer Res 2012;14(3):208
  • Sahadevan K, Darby S, Leung HY, Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol 2007;213(1):82-90
  • Gavine PR, Mooney L, Kilgour E, AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res 2012;72(8):2045-56
  • Chell V, Balmanno K, Little AS, Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene 2012; Epub ahead of print
  • Chen C, Patel S, Corisdeo S, Generation and characterization of a panel of monoclonal antibodies specific for human fibroblast growth factor receptor 4 (FGFR4). Hybridoma (Larchmt) 2005;24(3):152-9
  • Desnoyers LR, Pai R, Ferrando RE, Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 2008;27(1):85-97
  • Miura S, Mitsuhashi N, Shimizu H, Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 2012;12:56
  • Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008;7(6):504-16
  • Corso S, Comoglio PM, Giordano S. Cancer therapy: can the challenge be MET? Trends Mol Med 2005;11(6):284-92
  • Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002;2(4):289-300
  • Stella GM, Benvenuti S, Comoglio PM. Targeting the MET oncogene in cancer and metastases. Expert Opin Investig Drugs 2010;19(11):1381-94
  • Migliore C, Giordano S. Molecular cancer therapy: can our expectation be MET? Eur J Cancer 2008;44(5):641-51
  • Tong CY, Hui AB, Yin XL, Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg 2004;100(2 Suppl Pediatrics):187-93
  • Rajcevic U, Juvan R, Gazvoda B, Assessment of differential expression of oncogenes in gastric adenocarcinoma by fluorescent multiplex RT-PCR assay. Pflugers Arch 2001;442(6 Suppl 1):R190-2
  • Hara T, Ooi A, Kobayashi M, Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab Invest 1998;78(9):1143-53
  • Seruca R, Suijkerbuijk RF, Gartner F, Increasing levels of MYC and MET co-amplification during tumor progression of a case of gastric cancer. Cancer Genet Cytogenet 1995;82(2):140-5
  • Miller CT, Lin L, Casper AM, Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 2006;25(3):409-18
  • Umeki K, Shiota G, Kawasaki H. Clinical significance of c-met oncogene alterations in human colorectal cancer. Oncology 1999;56(4):314-21
  • Bean J, Brennan C, Shih JY, MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 2007;104(52):20932-7
  • Turke AB, Zejnullahu K, Wu YL, Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010;17(1):77-88
  • Danilkovitch-Miagkova A, Zbar B. Dysregulation of met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 2002;109(7):863-7
  • Rees H, Williamson D, Papanastasiou A, The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas. Growth Factors 2006;24(3):197-208
  • Ferracini R, Olivero M, Di Renzo MF, Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 1996;12(8):1697-705
  • Lukasiewicz E, Miekus K, Kijowski J, Inhibition of rhabdomyosarcoma's metastatic behavior through downregulation of MET receptor signaling. Folia Histochem Cytobiol 2009;47(3):485-9
  • Chen Y, Takita J, Mizuguchi M, Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression. Genes chromosomes Cancer 2007;46(4):348-58
  • Diomedi-Camassei F, McDowell HP, De Ioris MA, Clinical significance of CXC chemokine receptor-4 and c-Met in childhood rhabdomyosarcoma. Clin Cancer Res 2008;14(13):4119-27
  • Taulli R, Scuoppo C, Bersani F, Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 2006;66(9):4742-9
  • Mercado GE, Xia SJ, Zhang C, Identification of PAX3-FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomyosarcoma: focus on MYCN as a biologically relevant target. Genes chromosomes Cancer 2008;47(6):510-20
  • Ginsberg JP, Davis RJ, Bennicelli JL, Up-regulation of MET but not neural cell adhesion molecule expression by the PAX3-FKHR fusion protein in alveolar rhabdomyosarcoma. Cancer Res 1998;58(16):3542-6
  • Epstein JA, Shapiro DN, Cheng J, Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 1996;93(9):4213-18
  • Crose LE, Linardic CM. Receptor tyrosine kinases as therapeutic targets in rhabdomyosarcoma. Sarcoma 2011;2011:756982
  • Dang CV. MYC on the path to cancer. Cell 2012;149(1):22-35
  • Lu X, Pearson A, Lunec J. The MYCN oncoprotein as a drug development target. Cancer Lett 2003;197(1-2):125-30
  • Morgenstern DA, Anderson J. MYCN deregulation as a potential target for novel therapies in rhabdomyosarcoma. Expert Rev Anticancer Ther 2006;6(2):217-24
  • Pession A, Tonelli R. The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets 2005;5(4):273-83
  • Lin CY, Loven J, Rahl PB, Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012;151(1):56-67
  • Nie Z, Hu G, Wei G, c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012;151(1):68-79
  • Thomas WD, Raif A, Hansford L, Marshall G. N-myc transcription molecule and oncoprotein. Int J Biochem Cell Biol 2004;36(5):771-5
  • Schwab M. MYCN in neuronal tumours. Cancer Lett 2004;204(2):179-87
  • Schwab M, Westermann F, Hero B, Berthold F. Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol 2003;4(8):472-80
  • Driman D, Thorner PS, Greenberg ML, MYCN gene amplification in rhabdomyosarcoma. Cancer 1994;73(8):2231-7
  • Hachitanda Y, Toyoshima S, Akazawa K, Tsuneyoshi M. N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologic features. Mod Pathol 1998;11(12):1222-7
  • Toffolatti L, Frascella E, Ninfo V, MYCN expression in human rhabdomyosarcoma cell lines and tumour samples. J Pathol 2002;196(4):450-8
  • Williamson D, Lu YJ, Gordon T, Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 2005;23(4):880-8
  • Tonelli R, McIntyre A, Camerin C, Antitumor activity of sustained N-Myc reduction in rhabdomyosarcomas and transcriptional block by antigene therapy. Clin Cancer Res 2011;18(3):796-807
  • Barr FG, Duan F, Smith LM, Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. Genes chromosomes Cancer 2009;48(8):661-72
  • Barr FG. New treatments for rhabdomyosarcoma: the importance of target practice. Clin Cancer Res 2012;18(3):595-7
  • Norris RE, Adamson PC. Challenges and opportunities in childhood cancer drug development. Nat Rev Cancer 2012;12(11):776-82
  • Oesch S, Walter D, Wachtel M, Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma. Mol Cancer Ther 2009;8(7):1838-45
  • Marshall AD, Lagutina I, Grosveld GC. PAX3-FOXO1 Induces cannabinoid receptor 1 to enhance cell invasion and metastasis. Cancer Res 2011;71(24):7471-80
  • Sarnataro D, Pisanti S, Santoro A, The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Mol Pharmacol 2006;70(4):1298-306
  • Song ZH, Zhong M. CB1 cannabinoid receptor-mediated cell migration. J Pharmacol Exp Ther 2000;294(1):204-9
  • Hernlund E, Ihrlund LS, Khan O, Potentiation of chemotherapeutic drugs by energy metabolism inhibitors 2-deoxyglucose and etomoxir. Int J Cancer 2008;123(2):476-83
  • Liu L, Wang YD, Wu J, Carnitine palmitoyltransferase 1A (CPT1A): a transcriptional target of PAX3-FKHR and mediates PAX3-FKHR-dependent motility in alveolar rhabdomyosarcoma cells. BMC Cancer 2012;12(1):154
  • Zaugg K, Yao Y, Reilly PT, Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011;25(10):1041-51
  • Lin H, Lu JP, Laflamme P, Inter-related in vitro effects of androgens, fatty acids and oxidative stress in prostate cancer: a mechanistic model supporting prevention strategies. Int J Oncol 2010;37(4):761-6
  • Sugiyama N, Varjosalo M, Meller P, Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation. Cancer Res 2010;70(20):7851-61
  • Blandford MC, Barr FG, Lynch JC, Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: a report from the Children's Oncology Group. Pediatr Blood Cancer 2006;46(3):329-38
  • Chu E. The IGF-1R pathway as a therapeutic target. Oncology (Williston Park) 2011;25(6):538-9; 43
  • Rikhof B, de Jong S, Suurmeijer AJ, The insulin-like growth factor system and sarcomas. J Pathol 2009;217(4):469-82
  • Petricoin EF III, Espina V, Araujo RP, Phosphoprotein pathway mapping: akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 2007;67(7):3431-40
  • Wan X, Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist 2007;12(8):1007-18
  • Janus A, Robak T, Smolewski P. The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell Mol Biol Lett 2005;10(3):479-98
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12(1):9-22
  • Lane HA, Breuleux M. Optimal targeting of the mTORC1 kinase in human cancer. Curr Opin Cell Biol 2009;21(2):219-29
  • Garcia-Garcia C, Ibrahim YH, Serra V, Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy. Clin Cancer Res 2012;18(9):2603-12
  • Romeo Y, Moreau J, Zindy PJ, RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene 2012; Epub ahead of print
  • Taniguchi E, Nishijo K, McCleish AT, PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 2008;27(51):6550-60
  • Wang H, Yin Y, Li W, Over-expression of PDGFR-beta promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway. PLoS One 2012;7(2):e30503
  • Uehara H, Kim SJ, Karashima T, Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 2003;95(6):458-70
  • Antoniades HN, Galanopoulos T, Neville-Golden J, O'Hara CJ. Malignant epithelial cells in primary human lung carcinomas coexpress in vivo platelet-derived growth factor (PDGF) and PDGF receptor mRNAs and their protein products. Proc Natl Acad Sci USA 1992;89(9):3942-6
  • Henriksen R, Funa K, Wilander E, Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res 1993;53(19):4550-4
  • Chen CY, Cheng KC, Chang AY, 10-Shogaol, an antioxidant from zingiber officinale for skin cell proliferation and migration enhancer. Int J Mol Sci 2012;13(2):1762-77
  • Onisto M, Slongo ML, Gregnanin L, Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol 2005;27(3):791-8
  • Spannuth WA, Nick AM, Jennings NB, Functional significance of VEGFR-2 on ovarian cancer cells. Int J Cancer 2009;124(5):1045-53
  • Smith NR, Baker D, James NH, Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 2010;16(14):3548-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.