480
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Newer targets for modulation of intraocular pressure: focus on adenosine receptor signaling pathways

&

Bibliography

  • Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol 1989;107:186-8
  • Schwartz K, Budenz D. Current management of glaucoma. Curr Opin Ophthalmol 2004;15:119-26
  • Gliklich RE, Steinmann WC, Spaeth GL. Visual field change in low-tension glaucoma over a five-year follow-up. Ophthalmol 1989;96:316-20
  • Overby DR, Stamer WD, Johnson M. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res 2009;88:656-70
  • Maepea O, Bill A. Pressures in the juxtacanalicular tissue and schlemm's canal in monkeys. Exp Eye Res 1992;54:879-83
  • Pedrigi RM, Simon D, Reed A, et al. A model of giant vacuole dynamics in human schlemm's canal endothelial cells. Exp Eye Res 2011;92(1):57-66
  • Epstein DL, Rohen JW. Morphology of the trabecular meshwork and inner-wall endothelium after cationized ferritin perfusion in the monkey eye. Invest Ophthalmol Vis Sci 1991;32:160-71
  • Lütjen-Drecoll E, Shimizu T, Rohrbach M, et al. Quantitative analysis of “plaque material” in the inner and outer wall of schlemm's canal in normal and glaucomatous eyes. Exp Eye Res 1986;42:443-55
  • Ferrer E. Trabecular meshwork as a new target for the treatment of glaucoma. Drug News Perspect 2006;19(3):151-8
  • Saccà SC, Izzotti A. Focus on molecular events in the anterior chamber leading to glaucoma. Cell Mol Life Sci 2013. [Epub ahead of print]
  • Tan JC, Peters DM, Kaufman PL. Recent developments in understanding the pathophysiology of elevated intraocular pressure. Curr Opin Ophthalmol 2006;17(2):168-74
  • Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res 2000;19:271-95
  • Braun JS. Ecto-5'-nucleotidase-positive cells in the choroid and ciliary body of the rat eye. Anat Rec (Hoboken) 2010;293:379-82
  • Li A, Leung CT, Peterson-Yantorno K, et al. Mechanisms of ATP release by human trabecular meshwork cells, the enabling step in purinergic regulation of aqueous humor outflow. J Cell Physiol 2012;227(1):172-82
  • Luna C, Li G, Qiu J, et al. Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells. Invest Ophthalmol Vis Sci 2009;50(12):5805-10
  • Li A, Leung CT, Peterson-Yantorno K, et al. Cytoskeletal dependence of adenosine triphosphate release by human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011;52(11):7796-8005
  • Zhang X, Li A, Ge J, et al. Acute increase of intraocular pressure releases ATP into the anterior chamber. Exp Eye Res 2007;85(5):637-43
  • Li A, Zhang X, Zheng D, et al. Sustained elevation of extracellular ATP in aqueous humor from humans with primary chronic angle-closure glaucoma. Exp Eye Res 2011;93(4):528-33
  • Daines BS, Kent AR, McAleer MS, et al. Intraocular adenosine levels in normal and ocular hypertensive patients. J Ocul Pharmacol Ther 2003;19:113-19
  • Londos C, Cooper DM, Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 1980;77(5):2551-4
  • Fredholm BB. Adenosine receptors. Med Biol 1982;60(6):289-93
  • Daly JW, Butts-Lamb P, Padgett W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 1983;3(1):69-80
  • Zhou QY, Li C, Olah ME, et al. Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci USA 1992;15:89(16):7432-6
  • Schlötzer-Schrehardt U, Zenkel M, Decking U, et al. Selective upregulation of the A3 adenosine receptor in eyes with pseudoexfoliation syndrome and glaucoma. Invest Ophthalmol Vis Sci 2005;46(6):2023-34
  • Kvanta A, Seregard S, Sejersen S, et al. Localization of adenosine receptor messenger RNAs in the rat eye. Exp Eye Res 1997;65:595-602
  • Mitchell CH, Peterson-Yantorno K, Carre DA, et al. A3 adenosine receptors regulate Cl− channels of nonpigmented ciliary epithelial cells. Am J Physiol 1999;276:C659-66
  • Husain S, Shearer TW, Crosson CE. Mechanisms linking adenosine A1 receptors and extracellular signal-regulated kinase 1/2 activation in human trabecular meshwork cells. J Pharmacol Exp Ther 2007;320:258-65
  • Shearer TW, Crosson CE. Adenosine A1 receptor modulation of MMP-2 secretion by trabecular meshwork cells. Invest Ophthalmol Vis Sci 2002;43:3016-20
  • Crosson CE. Adenosine receptor activation modulates intraocular pressure in rabbits. J Pharmacol Exp Ther 1995;273:320-6
  • Avila MY, Stone RA, Civan MM. A(1)-, A(2A)- and A(3)-subtype adenosine receptors modulate intraocular pressure in the mouse. Br J Pharmacol 2001;134:241-5
  • Crosson CE. Ocular hypotensive activity of the adenosine agonist (R)-phenylisopropyladenosine in rabbits. Curr Eye Res 1992;11:453-8
  • Konno T, Murakami A, Uchibori T, et al. Involvement of adenosine A2a receptor in intraocular pressure decrease induced by 2-(1-octyn-1-yl)adenosine or 2-(6-cyano-1-hexyn-1-yl)adenosine. J Pharmacol Sci 2005;97:501-9
  • Karl MO, Fleischhauer JC, Stamer WD, et al. Differential P1-purinergic modulation of human schlemm's canal inner-wall cells. Am J Physiol 2005;288:C784-94
  • Fleischhauer JC, Mitchell CH, Stamer WD, et al. Common actions of adenosine receptor agonists in modulating human trabecular meshwork cell transport. J Membr Biol 2003;193:121-36
  • Henderson R, Schertler GF. The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. Philos Trans R Soc Lond B Biol Sci 1990;326:379-89
  • Fredholm BB, Arslan G, Halldner L, et al. Adenosine receptor signalling in vivo and in vitro. Drug Dev Res 2001;52:274-82
  • Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 2000;21(1):90-113
  • Watkins PA, Burns DL, Kanaho Y, et al. ADP-ribosylation of transducin by pertussis toxin. J Biol Chem 1985;260(25):13478-82
  • Northup JK, Sternweis PC, Smigel MD, et al. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 1980;77(11):6516-20
  • Gudermann T, Schöneberg T, Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 1997;20:399-427
  • Freissmuth M, Selzer E, Schütz W. Interactions of purified bovine brain A1-adenosine receptors with G-proteins. Reciprocal modulation of agonist and antagonist binding. Biochem J 1991;275:651-6
  • Akbar M, Okajima F, Tomura H, et al. A single species of A1 adenosine receptor expressed in chinese hamster ovary cells not only inhibits cAMP accumulation but also stimulates phospholipase C and arachidonate release. Mol Pharmacol 1994;45(5):1036-42
  • Palmer TM, Gettys TW, Stiles GL. Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptors. J Biol Chem 1995;270:16895-902
  • Muanprasat C, Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem 2013;5(7):781-98
  • Fredholm BB, Arslan G, Kull B, et al. Adenosine P1 receptor signalling. Drug Dev Res 1996;39:262-8
  • Klinger M, Freissmuth M, Nanoff C. Adenosine receptors: G protein-mediated signalling and the role of accessory proteins. Cell Signal 2002;14:99-108
  • Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 2001;41:145-74
  • Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001;2(8):599-609
  • Dickenson JM, Hill SJ. Involvement of G-protein betagamma subunits in coupling the adenosine A1 receptor to phospholipase C in transfected CHO cells. Eur J Pharmacol 1998;355(1):85-93
  • Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000;346:561-76
  • Toker A. Protein kinases as mediators of phosphoinositide 3-kinase signalling. Mol Pharmacol 2000;57(4):652-8
  • Gsandtner I, Charalambous C, Stefan E, et al. Heterotrimeric G protein-independent signaling of a G protein-coupled receptor. Direct binding of ARNO/cytohesin-2 to the carboxyl terminus of the A2A adenosine receptor is necessary for sustained activation of the ERK/MAP kinase pathway. J Biol Chem 2005;280(36):31898-905
  • Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 1999;79:143-80
  • Chen Z, Gibson TB, Robinson F, et al. MAPK kinases. Chem Rev 2001;101:2449-76
  • Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012;92(2):689-737
  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103(2):211-25
  • Enserink JM, Christensen AE, de Rooij J, et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol 2002;4(11):901-6
  • Quilliam LA, Mueller H, Bohl BP, et al. Rap1A is a substrate for cyclic AMP-dependent protein kinase in human neutrophils. J Immunol 1991;147(5):1628-35
  • Vossler MR, Yao H, York RD, et al. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 1997;89(1):73-82
  • Kitayama H, Sugimoto Y, Matsuzaki T, et al. A ras-related gene with transformation suppressor activity. Cell 1989;56(1):77-84
  • Schmitt JM, Stork PJ. PKA phosphorylation of Src mediates cAMP's inhibition of cell growth via Rap1. Mol Cell 2002;9(1):85-94
  • York RD, Yao H, Dillon T, et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 1998;392(6676):622-6
  • Houslay MD, Kolch W. Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol 2000;58(4):659-68
  • Schmitt JM, Stork PJ. Beta 2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. J Biol Chem 2000;275(33):25342-50
  • Schmitt JM, Stork PJ. Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol Cell Biol 2001;21(11):3671-83
  • Cook SJ, McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science 1993;262(5136):1069-72
  • Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly activate Rap1. Science 1998;282(5397):2275-9
  • de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998;396(6710):474-7
  • Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell 1992;71(7):1069-72
  • Dikic I, Tokiwa G, Lev S, et al. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 1996;383(6600):547-50
  • Della Rocca GJ, van Biesen T, Daaka Y, et al. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 1997;272(31):19125-32
  • Blaukat A, Ivankovic-Dikic I, Grönroos E, et al. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 1999;274(21):14893-901
  • Burgering BM, Bos JL. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem Sci 1995;20(1):18-22
  • Mattingly RR, Macara IG. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein beta gamma subunits. Nature 1996;382(6588):268-72
  • Lopez-Ilasaca M, Crespo P, Pellici PG, et al. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 1997;275(5298):394-7
  • Murga C, Fukuhara S, Gutkind JS. A novel role for phosphatidylinositol 3-kinase beta in signaling from G protein-coupled receptors to Akt. J Biol Chem 2000;275(16):12069-73
  • Pleiman CM, Hertz WM, Cambier JC. Activation of phosphatidylinositol-3' kinase by Src-family kinase SH3 binding to the p85 subunit. Science 1994;263(5153):1609-12
  • Cussac D, Newman-Tancredi A, Pasteau V, et al. Human dopamine D(3) receptors mediate mitogen-activated protein kinase activation via a phosphatidylinositol 3-kinase and an atypical protein kinase C-dependent mechanism. Mol Pharmacol 1999;56(5):1025-30
  • Takeda H, Matozaki T, Takada T, et al. PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. EMBO J 1999;18(2):386-95
  • Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 2001;20(13):1661-8
  • Pomerance M, Abdullah HB, Kamerji S, et al. Thyroid-stimulating hormone and cyclic AMP activate p38 mitogen-activated protein kinase cascade. Involvement of protein kinase A, rac1, and reactive oxygen species. J Biol Chem 2000;275(51):40539-46
  • Gutkind JS. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 2000;2000(40):re1
  • Marinissen MJ, Gutkind JS. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 2001;22(7):368-76
  • Zhong Y, Yang Z, Huang WC, et al. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta 2013;1830(4):2882-90
  • Crosson CE, Gray T. Characterization of ocular hypertension induced by adenosine agonists. Invest Ophthalmol Vis Sci 1996;37:1833-9
  • Chen J, Runyan SA, Robinson MR. Novel ocular antihypertensive compounds in clinical trials. Clin Ophthalmol 2011;5:667-77
  • Crosson CE. Intraocular pressure responses to the adenosine agonist cyclohexyladenosine: evidence for a dual mechanism of action. Invest Ophthalmol Vis Sci 2001;42:1837-40
  • Crosson CE, Gray T. Response to prejunctional adenosine receptors is dependent on stimulus frequency. Curr Eye Res 1997;16:359-64
  • Wax M, Sanghavi DM, Lee CH, et al. Purinergic receptors in ocular ciliary epithelial cells. Exp Eye Res 1993;57:89-95
  • Seidel MG, Klinger M, Freissmuth M, et al. Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J Biol Chem 1999;274(36):25833-41
  • Klinger M, Kudlacek O, Seidel MG, et al. MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases. J Biol Chem 2002;277(36):32490-7
  • Chan ESL, Liu H, Fernandez P, et al. Adenosine A2A receptors promote collagen production by a Fli1- and CTGF-mediated mechanism. Arthritis Res Therap 2013;15(3):R58
  • Gu J, Liu X, Wang QX, et al. Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res 2012;318(16):2105-15
  • Olanrewaju HA, Gafurov BS, Lieberman EM. Involvement of K+ channels in adenosine A2A and A2B receptor-mediated hyperpolarization of porcine coronary artery endothelial cells. J Cardiovasc Pharmacol 2002;40(1):43-9
  • Stumpff F, Strauss O, Boxberger M, et al. Characterization of maxi-K-channels in bovine trabecular meshwork and their activation by cyclic guanosine monophosphate. Invest Ophthalmol Vis Sci 1997;38(9):1883-92
  • Nara M, Dhulipala PDK, Wang YX, et al. Reconstitution of β-adrenergic modulation of large conductance, calcium-activated potassium (maxi-K) channels in xenopusoocytes: identification of the cAMP-dependent protein kinase phosphorylation site. J Biol Chem 1998;273(24):14920-4
  • Stumpff F, Wiederholt M. Regulation of trabecular meshwork contractility. Ophthalmologica 2000;214:33-53
  • Mitchell CH, Peterson-Yantorno K, Carré DA, et al. A3 adenosine receptors regulate Cl- channels of nonpigmented ciliary epithelial cells. Am J Physiol 1999;276(3 Pt 1):C659-66
  • Prendergast GC, Rane N. Farnesyltransferase inhibitors: mechanism and applications. Expert Opin Investig Drugs 2001;10(12):2105-16
  • Inoue T, Tanihara H. Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Ret Eye Res 2013;37:1-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.