406
Views
30
CrossRef citations to date
0
Altmetric
Review

Caveolae: molecular insights and therapeutic targets for stroke

, , , , &

Bibliography

  • Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet 2008;371:1612-23
  • Liu X. Beyond the time window of intravenous thrombolysis: standing by or by stenting. Interv Neurol 2012;1:3-15
  • Fisher M. New approaches to neuroprotective drug development. Stroke 2011;42:S24-7
  • Feuerstein GZ, Chavez J. Translational medicine for stroke drug discovery: the pharmaceutical industry perspective. Stroke 2009;40:S121-5
  • Ye R, Zhao G, Liu X. Ginsenoside rd for acute ischemic stroke: translating from bench to bedside. Expert Rev Neurother 2013;13:603-13
  • Vosler PS, Chen J. Potential molecular targets for translational stroke research. Stroke 2009;40:S119-20
  • Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010;20:177-86
  • Palade GE. Fine structure of blood capillaries. J Appl Phys 1953;24:1424
  • Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1955;1:445-58
  • Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007;8:185-94
  • Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998;67:199-225
  • Rothberg KG, Heuser JE, Donzell WC, et al. Caveolin, a protein component of caveolae membrane coats. Cell 1992;68:673-82
  • Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001;293:2449-52
  • Fra AM, Williamson E, Simons K, et al. De novo formation of caveolae in lymphocytes by expression of vip21-caveolin. Proc Natl Acad Sci USA 1995;92:8655-9
  • Bauer PM, Yu J, Chen Y, et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci USA 2005;102:204-9
  • Fujimoto T, Kogo H, Nomura R, et al. Isoforms of caveolin-1 and caveolar structure. J Cell Sci 2000;113 Pt 19:3509-17
  • Mora R, Bonilha VL, Marmorstein A, et al. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem 1999;274:25708-17
  • Razani B, Wang XB, Engelman JA, et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002;22:2329-44
  • Li S, Galbiati F, Volonte D, et al. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett 1998;434:127-34
  • Nishiyama K, Trapp BD, Ikezu T, et al. Caveolin-3 upregulation activates beta-secretase-mediated cleavage of the amyloid precursor protein in alzheimer’s disease. J Neurosci 1999;19:6538-48
  • Shin T, Kim H, Jin JK, et al. Expression of caveolin-1, -2, and -3 in the spinal cords of lewis rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 2005;165:11-20
  • Niesman IR, Zemke N, Fridolfsson HN, et al. Caveolin isoform switching as a molecular, structural, and metabolic regulator of microglia. Mol Cell Neurosci 2013;56:283-97
  • Galbiati F, Engelman JA, Volonte D, et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 2001;276:21425-33
  • Parat MO. The biology of caveolae: achievements and perspectives. Int Rev Cell Mol Biol 2009;273:117-62
  • Cameron PL, Ruffin JW, Bollag R, et al. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997;17:9520-35
  • Ikezu T, Ueda H, Trapp BD, et al. Affinity-purification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res 1998;804:177-92
  • Galbiati F, Volonte D, Gil O, et al. Expression of caveolin-1 and -2 in differentiating pc12 cells and dorsal root ganglion neurons: caveolin-2 is up-regulated in response to cell injury. Proc Natl Acad Sci USA 1998;95:10257-62
  • Boulware MI, Kordasiewicz H, Mermelstein PG. Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurosci 2007;27:9941-50
  • Bu J, Bruckner SR, Sengoku T, et al. Glutamate regulates caveolin expression in rat hippocampal neurons. J Neurosci Res 2003;72:185-90
  • Trushina E, Du Charme J, Parisi J, et al. Neurological abnormalities in caveolin-1 knock out mice. Behav Brain Res 2006;172:24-32
  • Gioiosa L, Raggi C, Ricceri L, et al. Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice. Behav Brain Res 2008;188:255-62
  • Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2007;8:128-40
  • Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci 2000;57:1577-92
  • Stern CM, Mermelstein PG. Caveolin regulation of neuronal intracellular signaling. Cell Mol Life Sci 2010;67:3785-95
  • Petralia RS, Wang YX, Wenthold RJ. Internalization at glutamatergic synapses during development. Eur J Neurosci 2003;18:3207-17
  • Head BP, Patel HH, Tsutsumi YM, et al. Caveolin-1 expression is essential for n-methyl-d-aspartate receptor-mediated src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. FASEB J 2008;22:828-40
  • Head BP, Hu Y, Finley JC, et al. Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons. J Biol Chem 2011;286:33310-21
  • Gaudreault SB, Chabot C, Gratton JP, et al. The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase a2 activity. J Biol Chem 2004;279:356-62
  • Jansa P, Mason SW, Hoffmann-Rohrer U, et al. Cloning and functional characterization of ptrf, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J 1998;17:2855-64
  • Vinten J, Johnsen AH, Roepstorff P, et al. Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta 2005;1717:34-40
  • Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 2013;14:98-112
  • Bastiani M, Liu L, Hill MM, et al. Murc/cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 2009;185:1259-73
  • Rodriguez G, Ueyama T, Ogata T, et al. Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (murc) as a causal gene for familial dilated cardiomyopathy. Circ Cardiovasc Genet 2011;4:349-58
  • Ogata T, Ueyama T, Isodono K, et al. Murc, a muscle-restricted coiled-coil protein that modulates the rho/rock pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol 2008;28:3424-36
  • Liu L, Pilch PF. A critical role of cavin (polymerase i and transcript release factor) in caveolae formation and organization. J Biol Chem 2008;283:4314-22
  • Hill MM, Bastiani M, Luetterforst R, et al. Ptrf-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008;132:113-24
  • Liu L, Brown D, McKee M, et al. Deletion of cavin/ptrf causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 2008;8:310-17
  • Rajab A, Straub V, McCann LJ, et al. Fatal cardiac arrhythmia and long-qt syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (cgl4) due to ptrf-cavin mutations. PLoS Genet 2010;6:e1000874
  • Hayashi YK, Matsuda C, Ogawa M, et al. Human ptrf mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 2009;119:2623-33
  • Shastry S, Delgado MR, Dirik E, et al. Congenital generalized lipodystrophy, type 4 (cgl4) associated with myopathy due to novel ptrf mutations. Am J Med Genet A 2010;152A:2245-53
  • Jasmin JF, Malhotra S, Singh Dhallu M, et al. Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res 2007;100:721-9
  • Kang JW, Lee SM. Impaired expression of caveolin-1 contributes to hepatic ischemia and reperfusion injury. Biochem Biophys Res Commun 2014;450(4):1351-7
  • Mahmoudi M, Willgoss D, Cuttle L, et al. In vivo and in vitro models demonstrate a role for caveolin-1 in the pathogenesis of ischaemic acute renal failure. J Pathol 2003;200:396-405
  • Sonveaux P, Martinive P, DeWever J, et al. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 2004;95:154-61
  • Jasmin JF, Rengo G, Lymperopoulos A, et al. Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2011;300:H1274-81
  • Tsutsumi YM, Horikawa YT, Jennings MM, et al. Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation 2008;118:1979-88
  • Young LH, Ikeda Y, Lefer AM. Caveolin-1 peptide exerts cardioprotective effects in myocardial ischemia-reperfusion via nitric oxide mechanism. Am J Physiol Heart Circ Physiol 2001;280:H2489-95
  • Xu L, Xie Y, Ma M, et al. Effect of caveolin-1 on oxygen glucose deprivation-induced astrocyte injury in rats. Chin J Geriatr Heart Brain Vessel Dis 2014;16:307-10
  • Shen J, Ma S, Chan P, et al. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J Neurochem 2006;96:1078-89
  • Ratajczak P, Damy T, Heymes C, et al. Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 2003;57:358-69
  • Fridolfsson HN, Kawaraguchi Y, Ali SS, et al. Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB J 2012;26:4637-49
  • Lo EH, Broderick JP, Moskowitz MA. Tpa and proteolysis in the neurovascular unit. Stroke 2004;35:354-6
  • Zhang JH, Badaut J, Tang J, et al. The vascular neural network--a new paradigm in stroke pathophysiology. Nat Rev Neurol 2012;8:711-16
  • Khatri R, McKinney AM, Swenson B, et al. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 2012;79:S52-7
  • Soares ES, Mendonca MC, Irazusta SP, et al. Evidences of endocytosis via caveolae following blood-brain barrier breakdown by phoneutria nigriventer spider venom. Toxicol Lett 2014;229:415-22
  • Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010;72:463-93
  • Frank PG, Woodman SE, Park DS, et al. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 2003;23:1161-8
  • Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol 2014;71:147-63
  • McIntosh DP, Tan XY, Oh P, et al. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci USA 2002;99:1996-2001
  • John TA, Vogel SM, Tiruppathi C, et al. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol 2003;284:L187-96
  • Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998;141:905-15
  • Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001;276:38121-38
  • Schubert W, Frank PG, Razani B, et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 2001;276:48619-22
  • Knowland D, Arac A, Sekiguchi KJ, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 2014;82:603-17
  • Sverdlov M, Shajahan AN, Minshall RD. Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis. J Cell Mol Med 2007;11:1239-50
  • Tiruppathi C, Song W, Bergenfeldt M, et al. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 1997;272:25968-75
  • Minshall RD, Tiruppathi C, Vogel SM, et al. Endothelial cell-surface gp60 activates vesicle formation and trafficking via g(i)-coupled src kinase signaling pathway. J Cell Biol 2000;150:1057-70
  • Minshall RD, Sessa WC, Stan RV, et al. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 2003;285:L1179-83
  • Sun Y, Hu G, Zhang X, et al. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res 2009;105:676-85; 15 p following 685
  • Tiruppathi C, Shimizu J, Miyawaki-Shimizu K, et al. Role of nf-kappab-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. J Biol Chem 2008;283:4210-18
  • Schubert W, Frank PG, Woodman SE, et al. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, l-name, restores normal microvascular permeability in cav-1 null mice. J Biol Chem 2002;277:40091-8
  • Song L, Ge S, Pachter JS. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 2007;109:1515-23
  • Siddiqui MR, Komarova YA, Vogel SM, et al. Caveolin-1-enos signaling promotes p190rhogap-a nitration and endothelial permeability. J Cell Biol 2011;193:841-50
  • Cai L, Yi F, Dai Z, et al. Loss of caveolin-1 and adiponectin induces severe inflammatory lung injury following lps challenge through excessive oxidative/nitrative stress. Am J Physiol Lung Cell Mol Physiol 2014;306:L566-73
  • Stamatovic SM, Keep RF, Wang MM, et al. Caveolae-mediated internalization of occludin and claudin-5 during ccl2-induced tight junction remodeling in brain endothelial cells. J Biol Chem 2009;284:19053-66
  • Errede M, Girolamo F, Ferrara G, et al. Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2012;71:840-54
  • Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011;42:3323-8
  • Puyraimond A, Fridman R, Lemesle M, et al. Mmp-2 colocalizes with caveolae on the surface of endothelial cells. Exp Cell Res 2001;262:28-36
  • Chow AK, Cena J, El-Yazbi AF, et al. Caveolin-1 inhibits matrix metalloproteinase-2 activity in the heart. J Mol Cell Cardiol 2007;42:896-901
  • Han F, Zhu HG. Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (mmps) in pancreatic carcinoma cells. J Surg Res 2010;159:443-50
  • Williams TM, Medina F, Badano I, et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of cav-1 in cell invasiveness and matrix metalloproteinase (mmp-2/9) secretion. J Biol Chem 2004;279:51630-46
  • Wang R, Li Z, Guo H, et al. Caveolin 1 knockdown inhibits the proliferation, migration and invasion of human breast cancer bt474 cells. Mol Med Rep 2014;9:1723-8
  • Gu Y, Zheng G, Xu M, et al. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 2012;120:147-56
  • Gu Y, Dee CM, Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 2011;3:1216-31
  • Nag S, Manias JL, Stewart DJ. Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol Appl Neurobiol 2009;35:417-26
  • Liu J, Jin X, Liu KJ, et al. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 2012;32:3044-57
  • Zhong Y, Smart EJ, Weksler B, et al. Caveolin-1 regulates human immunodeficiency virus-1 tat-induced alterations of tight junction protein expression via modulation of the ras signaling. J Neurosci 2008;28:7788-96
  • Li S, Couet J, Lisanti MP. Src tyrosine kinases, galpha subunits, and h-ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of src tyrosine kinases. J Biol Chem 1996;271:29182-90
  • Couet J, Li S, Okamoto T, et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 1997;272:6525-33
  • Kong MM, Hasbi A, Mattocks M, et al. Regulation of d1 dopamine receptor trafficking and signaling by caveolin-1. Mol Pharmacol 2007;72:1157-70
  • Syme CA, Zhang L, Bisello A. Caveolin-1 regulates cellular trafficking and function of the glucagon-like peptide 1 receptor. Mol Endocrinol 2006;20:3400-11
  • Hommelgaard AM, Roepstorff K, Vilhardt F, et al. Caveolae: stable membrane domains with a potential for internalization. Traffic 2005;6:720-4
  • Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 2008;48:359-91
  • Teixeira A, Chaverot N, Schröder C, et al. Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes. J Neurochem 1999;72:120-8
  • Yun JH, Park SJ, Jo A, et al. Caveolin-1 is involved in reactive oxygen species-induced shp-2 activation in astrocytes. Exp Mol Med 2011;43:660-8
  • Consales C, Volpicelli F, Greco D, et al. Gdnf signaling in embryonic midbrain neurons in vitro. Brain Res 2007;1159:28-39
  • Ballard-Croft C, Locklar AC, Kristo G, et al. Regional myocardial ischemia-induced activation of mapks is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol 2006;291:H658-67
  • Wright CD, Chen Q, Baye NL, et al. Nuclear alpha1-adrenergic receptors signal activated erk localization to caveolae in adult cardiac myocytes. Circ Res 2008;103:992-1000
  • Li L, Ren C, Yang G, et al. Caveolin-1 promotes autoregulatory, akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res 2009;7:1781-91
  • Zhang B, Peng F, Wu D, et al. Caveolin-1 phosphorylation is required for stretch-induced egfr and akt activation in mesangial cells. Cell Signal 2007;19:1690-700
  • Wu SZ, Peng FF, Li JL, et al. Akt and rhoa activation in response to high glucose require caveolin-1 phosphorylation in mesangial cells. Am J Physiol Renal Physiol 2014;306(11):F1308-17
  • Boyd NL, Park H, Yi H, et al. Chronic shear induces caveolae formation and alters erk and akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 2003;285:H1113-22
  • Albinsson S, Nordström I, Swärd K, et al. Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall. Am J Physiol Cell Physiol 2008;294:C271-9
  • Sedding DG, Hermsen J, Seay U, et al. Caveolin-1 facilitates mechanosensitive protein kinase b (akt) signaling in vitro and in vivo. Circ Res 2005;96:635-42
  • Zundel W, Giaccia A. Inhibition of the anti-apoptotic pi (3) k/akt/bad pathway by stress. Genes Dev 1998;12:1941-6
  • Lu X, Kambe F, Cao X, et al. Insulin-like growth factor-i activation of akt survival cascade in neuronal cells requires the presence of its cognate receptor in caveolae. Exp Cell Res 2008;314:342-51
  • Hsieh SR, Hsu CS, Lu CH, et al. Epigallocatechin-3-gallate-mediated cardioprotection by akt/gsk-3beta/caveolin signalling in h9c2 rat cardiomyoblasts. J Biomed Sci 2013;20:86
  • Lasserre R, Guo XJ, Conchonaud F, et al. Raft nanodomains contribute to akt/pkb plasma membrane recruitment and activation. Nat Chem Biol 2008;4:538-47
  • Fanzani A, Stoppani E, Gualandi L, et al. Phenotypic behavior of c2c12 myoblasts upon expression of the dystrophy-related caveolin-3 p104l and tft mutants. FEBS Lett 2007;581:5099-104
  • Smythe GM, Rando TA. Altered caveolin-3 expression disrupts pi(3) kinase signaling leading to death of cultured muscle cells. Exp Cell Res 2006;312:2816-25
  • Portnychenko A, Lapikova-Bryginska T, Vasylenko M, et al. P364cardioprotective signaling in preconditioned and hypertrophied heart. Cardiovasc Res 2014;103(Suppl 1):S66-7
  • Sun J, Kohr MJ, Nguyen T, et al. Disruption of caveolae blocks ischemic preconditioning-mediated s-nitrosylation of mitochondrial proteins. Antioxid Redox Signal 2012;16:45-56
  • Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010;11:621-32
  • Shiroto T, Romero N, Sugiyama T, et al. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS ONE 2014;9:e87871
  • Schubert W, Sotgia F, Cohen AW, et al. Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol 2007;170:316-33
  • Bosch M, Mari M, Herms A, et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 2011;21:681-6
  • Pavlides S, Tsirigos A, Vera I, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle 2010;9:2201-19
  • Quest AF, Lobos-Gonzalez L, Nunez S, et al. The caveolin-1 connection to cell death and survival. Curr Mol Med 2013;13:266-81
  • Zhang M, Lee SJ, An C, et al. Caveolin-1 mediates fas-bid signaling in hyperoxia-induced apoptosis. Free Radic Biol Med 2011;50:1252-62
  • Luo X, Budihardjo I, Zou H, et al. Bid, a bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481-90
  • Chen ZH, Lam HC, Jin Y, et al. Autophagy protein microtubule-associated protein 1 light chain-3b (lc3b) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA 2010;107:18880-5
  • Mironov AJr, Latawiec D, Wille H, et al. Cytosolic prion protein in neurons. J Neurosci 2003;23:7183-93
  • Kuwahara C, Takeuchi AM, Nishimura T, et al. Prions prevent neuronal cell-line death. Nature 1999;400:225-6
  • Shyu WC, Lin SZ, Chiang MF, et al. Overexpression of prpc by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci 2005;25:8967-77
  • Weise J, Sandau R, Schwarting S, et al. Deletion of cellular prion protein results in reduced akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 2006;37:1296-300
  • Harmey JH, Doyle D, Brown V, et al. The cellular isoform of the prion protein, prpc, is associated with caveolae in mouse neuroblastoma (n2a) cells. Biochem Biophys Res Commun 1995;210:753-9
  • Pantera B, Bini C, Cirri P, et al. Prpc activation induces neurite outgrowth and differentiation in pc12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem 2009;110:194-207
  • Toni M, Spisni E, Griffoni C, et al. Cellular prion protein and caveolin-1 interaction in a neuronal cell line precedes fyn/erk 1/2 signal transduction. J Biomed Biotechnol 2006;2006:69469
  • Mouillet-Richard S, Ermonval M, Chebassier C, et al. Signal transduction through prion protein. Science 2000;289:1925-8
  • Mouillet-Richard S, Schneider B, Pradines E, et al. Cellular prion protein signaling in serotonergic neuronal cells. Ann N Y Acad Sci 2007;1096:106-19
  • Schneider B, Mutel V, Pietri M, et al. Nadph oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 2003;100:13326-31
  • Niesman IR, Schilling JM, Shapiro LA, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation 2014;11:39
  • Santizo RA, Xu HL, Galea E, et al. Combined endothelial nitric oxide synthase upregulation and caveolin-1 downregulation decrease leukocyte adhesion in pial venules of ovariectomized female rats. Stroke 2002;33:613-16
  • Wang XM, Kim HP, Song R, et al. Caveolin-1 confers antiinflammatory effects in murine macrophages via the mkk3/p38 mapk pathway. Am J Respir Cell Mol Biol 2006;34:434-42
  • Wang XM, Kim HP, Nakahira K, et al. The heme oxygenase-1/carbon monoxide pathway suppresses tlr4 signaling by regulating the interaction of tlr4 with caveolin-1. J Immunol 2009;182:3809-18
  • Bucci M, Gratton JP, Rudic RD, et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 2000;6:1362-7.
  • Garrean S, Gao XP, Brovkovych V, et al. Caveolin-1 regulates nf-kappab activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol 2006;177:4853-60
  • Fernandez-Lizarbe S, Montesinos J, Guerri C. Ethanol induces tlr4/tlr2 association, triggering an inflammatory response in microglial cells. J Neurochem 2013;126:261-73
  • Pascual-Lucas M, Fernandez-Lizarbe S, Montesinos J, et al. Lps or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of tlr4 in cortical astrocytes. J Neurochem 2014;129:448-62
  • Jiao H, Zhang Y, Yan Z, et al. Caveolin-1 tyr14 phosphorylation induces interaction with tlr4 in endothelial cells and mediates myd88-dependent signaling and sepsis-induced lung inflammation. J Immunol 2013;191:6191-9
  • Schlegel N, Leweke R, Meir M, et al. Role of nf-kappab activation in lps-induced endothelial barrier breakdown. Histochem Cell Biol 2012;138:627-41
  • Chen J, Ye X, Yan T, et al. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke 2011;42:3551-8
  • Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 2009;8:491-500
  • Liu X, Ye R, Yan T, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2014;115:92-115
  • Ergul A, Alhusban A, Fagan SC. Angiogenesis: a harmonized target for recovery after stroke. Stroke 2012;43:2270-4
  • Dong F, Zhang X, Wold LE, et al. Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of etb receptor, nadph oxidase and caveolin-1. Br J Pharmacol 2005;145:323-33
  • Liu J, Razani B, Tang S, et al. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 1999;274:15781-5
  • Xie L, Frank PG, Lisanti MP, et al. Endothelial cells isolated from caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts. Am J Physiol Cell Physiol 2010;298:C693-701
  • Liu J, Wang XB, Park DS, et al. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 2002;277:10661-8
  • Griffoni C, Spisni E, Santi S, et al. Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 2000;276:756-61
  • Hoffman R. Do the signalling proteins for angiogenesis exist as a modular complex? The case for the angosome. Med Hypotheses 2004;63:675-80
  • Tahir SA, Park S, Thompson TC. Caveolin-1 regulates vegf-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 2009;8:2286-96
  • Labrecque L, Royal I, Surprenant DS, et al. Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 2003;14:334-47
  • Ikeda S, Ushio-Fukai M, Zuo L, et al. Novel role of arf6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 2005;96:467-75
  • Liao WX, Feng L, Zhang H, et al. Compartmentalizing vegf-induced erk2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Mol Endocrinol 2009;23:1428-44
  • Ferrell JEJr. What do scaffold proteins really do? Sci STKE 2000;2000:pe1
  • Sbaa E, Frerart F, Feron O. The double regulation of endothelial nitric oxide synthase by caveolae and caveolin: a paradox solved through the study of angiogenesis. Trends Cardiovasc Med 2005;15:157-62
  • Garcia-Cardena G, Oh P, Liu J, et al. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 1996;93:6448-53
  • Feron O, Belhassen L, Kobzik L, et al. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 1996;271:22810-14
  • Liu J, Garcia-Cardena G, Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry 1996;35:13277-81
  • Feron O, Balligand JL. Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 2006;69:788-97
  • Stetler RA, Leak RK, Gan Y, et al. Preconditioning provides neuroprotection in models of cns disease: paradigms and clinical significance. Prog Neurobiol 2014;114:58-83
  • Patel HH, Head BP, Petersen HN, et al. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors. Am J Physiol Heart Circ Physiol 2006;291:H344-50
  • Patel HH, Tsutsumi YM, Head BP, et al. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 2007;21:1565-74
  • Horikawa YT, Patel HH, Tsutsumi YM, et al. Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol 2008;44:123-30
  • Zhao J, Wang F, Zhang Y, et al. Sevoflurane preconditioning attenuates myocardial ischemia/reperfusion injury via caveolin-3-dependent cyclooxygenase-2 inhibition. Circulation 2013;128:S121-9
  • Roth DM, Patel HH. Role of caveolae in cardiac protection. Pediatr Cardiol 2011;32:329-33
  • Tsutsumi YM, Kawaraguchi Y, Horikawa YT, et al. Role of caveolin-3 and glucose transporter-4 in isoflurane-induced delayed cardiac protection. Anesthesiology 2010;112:1136-45
  • Gustavsson M, Mallard C, Vannucci SJ, et al. Vascular response to hypoxic preconditioning in the immature brain. J Cereb Blood Flow Metab 2007;27:928-38
  • Head BP, Peart JN, Panneerselvam M, et al. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS One 2010;5:e15697
  • Rathor N, Zhuang R, Wang JY, et al. Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering ca(2+) influx after wounding. Am J Physiol Gastrointest Liver Physiol 2014;306:G650-8
  • Chen Z, Bakhshi FR, Shajahan AN, et al. Nitric oxide-dependent src activation and resultant caveolin-1 phosphorylation promote enos/caveolin-1 binding and enos inhibition. Mol Biol Cell 2012;23:1388-98
  • Takeishi Y, Huang Q, Wang T, et al. Src family kinase and adenosine differentially regulate multiple map kinases in ischemic myocardium: modulation of map kinases activation by ischemic preconditioning. J Mol Cell Cardiol 2001;33:1989-2005
  • Cao H, Sanguinetti AR, Mastick CC. Oxidative stress activates both src-kinases and their negative regulator csk and induces phosphorylation of two targeting proteins for csk: caveolin-1 and paxillin. Exp Cell Res 2004;294:159-71
  • Ye R, Yang Q, Kong X, et al. Sevoflurane preconditioning improves mitochondrial function and long-term neurologic sequelae after transient cerebral ischemia: role of mitochondrial permeability transition. Crit Care Med 2012;40:2685-93
  • Ye R, Kong X, Yang Q, et al. Ginsenoside rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 2011;61:815-24
  • Ye R, Kong X, Yang Q, et al. Ginsenoside rd in experimental stroke: superior neuroprotective efficacy with a wide therapeutic window. Neurotherapeutics 2011;8:515-25
  • Ye R, Li N, Han J, et al. Neuroprotective effects of ginsenoside rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res 2009;64:306-10
  • Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 2008;55:363-89
  • Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79:1431-568
  • Minnerup J, Schabitz WR. Multifunctional actions of approved and candidate stroke drugs. Neurotherapeutics 2009;6:43-52
  • Lipton SA. Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci 2007;8:803-8
  • Chang CF, Chen SF, Lee TS, et al. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol 2011;178:1749-61
  • Gao Y, Zhao Y, Pan J, et al. Treadmill exercise promotes angiogenesis in the ischemic penumbra of rat brains through caveolin-1/vegf signaling pathways. Brain Res 2014;1585:83-90
  • Trajkovski M, Hausser J, Soutschek J, et al. Micrornas 103 and 107 regulate insulin sensitivity. Nature 2011;474:649-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.