7,322
Views
32
CrossRef citations to date
0
Altmetric
Review

Bombesin receptor subtype 3 as a potential target for obesity and diabetes

, &

Bibliography

  • Ladenheim EE. Bombesin. In: Kastin AJ, editor. Handbook of biologically active peptides. Elsevier; Amsterdam: 2013. p. 1064-70
  • Ladenheim EE, Wirth KE, Moran TH. Receptor subtype mediation of feeding suppression by bombesin-like peptides. Pharmacol Biochem Behav 1996;54:705-11
  • Paula GS, Souza LL, Cabanelas A, et al. Female mice target deleted for the neuromedin B receptor have partial resistance to diet-induced obesity. J Physiol 2010;588:1635-45
  • Ladenheim EE, Hampton LL, Whitney AC, et al. Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice. J Endocrinol 2002;174:273-81
  • Yamada K, Wada E, Wada K. Bombesin-like peptides: studies on food intake and social behaviour with receptor knock-out mice. Ann Med 2000;32:519-29
  • Gorbulev V, Akhundova A, Buchner H, et al. Molecular cloning of a new bombesin receptor subtype expressed in uterus during pregnancy. Eur J Biochem 1992;208(2):405-10
  • Fathi Z, Corjay MH, Shapira H, et al. BRS-3: novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 1993;268(8):5979-84
  • Jensen RT, Battey JF, Spindel ER, et al. International Union of Pharmacology. LVIII. Mammalian Bombesin Receptors: Nomenclature, distribution, pharmacology, signaling and functions in normal and disease states. Pharmacol Rev 2008;60:1-42
  • Ramos-Alvarez I, Moreno P, Mantey SA, et al. Insights into bombesin receptors and ligands: highlighting recent advances. Peptides 2015; In Press
  • Gonzalez N, Moody TW, Igarashi H, et al. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes 2008;15:58-64
  • Majumdar ID, Weber HC. Biology and pharmacology of bombesin receptor subtype-3. Curr Opin Endocrinol Diabetes Obes 2012;19:3-7
  • Ohki-Hamazaki H, Watase K, Yamamoto K, et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 1997;390(6656):165-9
  • Jensen RT, Moody TW. Bombesin-related peptides. In: Kastin AJ, editor. Handbook of biologically active peptides. Elsevier; Amsterdam: 2013. p. 1188-96
  • Uehara H, Gonzalez N, Sancho V, et al. Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides 2011;32:1685-99
  • Sano H, Feighner SD, Hreniuk DL, et al. Characterization of the bombesin-like peptide receptor family in primates. Genomics 2004;84:139-46
  • Wada E, Way J, Lebacq-Verheyden AM, et al. Neuromedin B and gastrin-releasing peptide mRNAs are differentially distributed in the rat nervous system. J Neurosci 1990;10:2917-30
  • Jensen RT, Moody TW. Bombesin-related peptides and neurotensin: effects on cancer growth/proliferation and cellular signaling in cancer. In: Kastin AJ, editor. Handbook of biologically active peptides. Elsevier; Amsterdam: 2006. p. 429-34
  • Weber HC. Gastrointestinal peptides and itch sensation. Curr Opin Endocrinol Diabetes Obes 2015;22:29-33
  • Ohki-Hamazaki H, Wada E, Matsui K, et al. Cloning and expression of the neuromedin B receptor and the third subtype of bombesin receptor genes in the mouse. Brain Res 1997;762:165-72
  • Weber HC, Hampton LL, Jensen RT, et al. Structure and chromosomal localization of the mouse bombesin receptor subtype 3 gene. Gene 1998;211:125-31
  • Liu J, Lao ZJ, Zhang J, et al. Molecular basis of the pharmacological difference between rat and human bombesin receptor subtype-3 (BRS-3). Biochemistry (Mosc) 2002;41:8954-60
  • Whitley JC, Moore C, Giraud AS, et al. Molecular cloning, genomic organization and selective expression of bombesin receptor subtype 3 in the sheep hypothalamus and pituitary. J Mol Endocrinol 1999;23:107-16
  • Spindel ER. Bombesin peptides. In: Kastin AJ, editor. Handbook of biologically active peptides. Elsevier; Amsterdam: 2013. p. 325-30
  • Mantey SA, Weber HC, Sainz E, et al. Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates it has a unique pharmacology compared to other mammalian bombesin receptors. J Biol Chem 1997;272(41):26062-71
  • Moreno P, Mantey SA, Nuche-Berenguer B, et al. Comparative pharmacology of bombesin receptor subtype-3, nonpeptide agonist MK-5046, a universal peptide agonist, and peptide antagonist Bantag-1 for human bombesin receptors. J Pharmacol Exp Ther 2013;347:100-16
  • Pradhan TK, Katsuno T, Taylor JE, et al. Identification of a unique ligand which has high affinity for all four bombesin receptor subtypes. Eur J Pharmacol 1998;343:275-87
  • Ryan RR, Katsuno T, Mantey SA, et al. Comparative pharmacology of a nonpeptoid neuromedin B antagonist PD 168368. J Pharmacol Exp Ther 1999;290:1202-11
  • Ryan RR, Weber HC, Mantey SA, et al. Pharmacology and intracellular signaling mechanisms of the native human orphan receptor BRS-3 in lung cancer cells. J Pharmacol Exp Ther 1998;287:366-80
  • Reubi JC, Wenger S, Schumuckli-Maurer J, et al. Bombesin receptor subtypes in human cancers: detection with the universal radoligand (125)I-[D-TYR(6), beta-ALA(11),PHE(13), NLE(14)] bombesin(6-14). Clin Cancer Res 2002;8:1139-46
  • Ramos-Alvarez I, Nakamura T, Mantey SA, Jensen RT. Chiral diazepine analogs are selective, potent agonists for the orphan bombesin receptor, BRS-3. Gastroenterology 2015;148(5); In press
  • Feng Y, Guan XM, Li J, et al. Bombesin receptor subtype-3 (BRS-3) regulates glucose-stimulated insulin secretion in pancreatic islets across multiple species. Endocrinology 2011;152:4106-15
  • Jennings CA, Harrison DC, Maycox PR, et al. The distribution of the orphan bombesin receptor subtype-3 in the rat CNS. Neuroscience 2003;120:309-24
  • Porcher C, Juhem A, Peinnequin A, et al. Bombesin receptor subtype-3 is expressed by the enteric nervous system and by interstitial cells of Cajal in the rat gastrointestinal tract. Cell Tissue Res 2005;320:21-31
  • Guan XM, Chen H, Dobbelaar PH, et al. Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab 2010;11:101-12
  • Zhang L, Parks GS, Wang Z, et al. Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system. J Comp Neurol 2013;521:1020-39
  • Jensen RT, Battey J, Benya RV, Moody TW. Bombesin Receptors. IUPHAR/BPS guide to pharamcology (WEBSITE). 2014. Available from: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=9
  • Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 2007;213:589-602
  • Ryan RR, Weber HC, Hou W, et al. Ability of various bombesin receptor agonists and antagonists to alter intracellular signaling of the human orphan receptor BRS-3. J Biol Chem 1998;273:13613-24
  • Weber HC. Regulation and signaling of human bombesin receptors and their biological effects. Curr Opin Endocrinol Diabetes Obes 2009;16:66-71
  • Qin X, Qu X, Coy D, et al. A selective human bombesin receptor subtype-3 peptide agonist mediates CREB phosphorylation and transactivation. J Mol Neurosci 2012;46:88-99
  • Patel M, Kawano T, Suzuki N, et al. Galpha13/PDZ-RhoGEF/RhoA signaling is essential for gastrin-releasing peptide receptor-mediated colon cancer cell migration. Mol Pharmacol 2014;86:252-62
  • Tsuda T, Kusui T, Jensen RT. Neuromedin B receptor activation causes tyrosine phosphorylation of p125FAK by a phospholipase C independent mechanism which requires p21rho and integrity of the acini cytoskeleton. Biochemistry (Mosc) 1997;36(51):16328-37
  • Berna MJ, Hoffmann KM, Tapia JA, et al. CCK causes PKD1 activation in pancreatic acini by signaling through PKC-delta and PKC-independent pathways. Biochim Biophys Acta 2007;1773:483-501
  • Pace A, Tapia JA, Garcia-Marin LJ, et al. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. Biochim Biophys Acta 2006;1763:356-65
  • Williams BY, Wang Y, Schonbrunn A. Agonist binding and protein kinase C activation stimulate phosphorylation of the gastrin-releasing peptide receptor at distinct sites. Mol Pharmacol 1996;50:716-27
  • Benya RV, Akeson M, Mrozinski J, et al. Internalization of the gastrin-releasing peptide receptor is mediated by phospholipase C-dependent and -independent processes. Mol Pharmacol 1994;46:495-501
  • Benya RV, Fathi Z, Battey JF, et al. Serines and threonines in the gastrin-releasing peptide receptor carboxyl terminus mediate internalization. J Biol Chem 1993;268:20285-90
  • Benya RV, Fathi Z, Pradhan T, et al. Gastrin-releasing peptide receptor-induced internalization, down-regulation, desensitization and growth: Possible role of cAMP. Mol Pharmacol 1994;46(2):235-45
  • Benya RV, Kusui T, Battey JF, et al. Desensitizaton of neuromedin B receptors (NMB-R) on native and NMB-R transfected cells involves down-regulation and internalization. J Biol Chem 1994;269:11721-8
  • Benya RV, Kusui T, Battey JF, et al. Chronic desensitization and down-regulation of the gastrin-releasing peptide receptor are mediated by a protein kinase C-dependent mechanism. J Biol Chem 1995;270:3346-52
  • Moody TW, Chan D, Fahrenkrug J, et al. Neuropeptides as autocrine growth factors in cancer cells. Curr Pharm Des 2003;9:495-509
  • Jensen RT, Moody TW. Bombesin Peptides (Cancer). In: Kastin AJ, editor. Handbook of biologically active peptides. Elsevier; Amsterdam: 2013. p. 506-11
  • Moody TW, Mantey SA, Moreno P, et al. ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth. Peptides 2015;64:55-61
  • Moody TW, Nuche-Berenguer B, Nakamura T, et al. EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer. Curr Drug Targets 2015. [Epub ahead of print]
  • Liu X, Carlisle DL, Swick MC, et al. Gastrin-releasing peptide activates Akt through the epidermal growth factor receptor pathway and abrogates the effect of gefitinib. Exp Cell Res 2007;313:1361-72
  • Moody TW, Berna MJ, Mantey S, et al. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells. Eur J Pharmacol 2010;637:38-45
  • Moody TW, Sancho V, Di Florio A, et al. Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation. Peptides 2011;32:1677-84
  • Di Florio A, Sancho V, Moreno P, et al. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. Biochim Biophys Acta 2013;1833:573-82
  • Ramos-Alvarez I, Moreno-Villegas Z, Martin-Duce A, et al. Human BRS-3 receptor: functions/role in cell signaling pathways and glucose metabolism in obese or diabetic myocytes. Peptides 2014;51:91-9
  • Majumdar ID, Weber HC. Biology of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes 2011;18:68-74
  • Zhang Q, Bhola NE, Lui VW, et al. Antitumor mechanisms of combined gastrin-releasing peptide receptor and epidermal growth factor receptor targeting in head and neck cancer. Mol Cancer Ther 2007;6:1414-24
  • Sancho V, Di Florio A, Moody TW, et al. Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv 2011;8:79-134
  • Gonzalez N, Martin-Duce A, Martinez-Arrieta F, et al. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes. Int J Mol Med 2015;35(4):925-31
  • Ramos-Alvarez I, Martin-Duce A, Moreno-Villegas Z, et al. Bombesin receptor subtype-3 (BRS-3), a novel candidate as therapeutic molecular target in obesity and diabetes. Mol Cell Endocrinol 2013;367:109-15
  • Mantey SA, Coy DH, Entsuah LK, et al. Development of bombesin analogs with conformationally restricted amino acid substitutions with enhanced selectivity for the orphan receptor human bombesin receptor subtype 3. J Pharmacol Exp Ther 2004;310:1161-70
  • Mantey SA, Coy DH, Pradhan TK, et al. Rational design of a peptide agonist that interacts selectively with the orphan receptor, bombesin receptor subtype 3. J Biol Chem 2001;276:9219-29
  • Boyle RG, Humphries J, Mitchell T, et al. The design of a new potent and selective ligand for the orphan bombesin receptor subtype 3 (BRS3). J Pept Sci 2005;11:136-41
  • Weber D, Berger C, Heinrich T, et al. Systematic optimization of a lead-structure identities for a selective short peptide agonist for the human orphan receptor BRS-3. J Pept Sci 2002;8:461-75
  • Zhang L, Nothacker HP, Wang Z, et al. Pharmacological characterization of a selective agonist for bombesin receptor subtype-3. Biochem Biophys Res Commun 2009;387:283-8
  • Majumdar ID, Weber HC. Appetite-modifying effects of bombesin receptor subtype-3 agonists. Handb Exp Pharmacol 2012;209:405-32
  • Mantey SA, Gonzalez N, Schumann M, et al. Identification of bombesin receptor subtype-specific ligands: effect of N-methyl scanning, truncation, substitution, and evaluation of putative reported selective ligands. J Pharmacol Exp Ther 2006;319:980-9
  • Sancho V, Moody TW, Mantey SA, et al. Pharmacology of putative selective hBRS-3 receptor agonists for human bombesin receptors (BnR): Affinities, potencies and selectivity in multiple native and BnR transfected cells. Peptides 2010;31:1569-78
  • Gonzalez N, Hocart SJ, Portal-Nunez S, et al. Molecular basis for agonist selectivity and activation of the orphan bombesin receptor subtype 3 receptor. J Pharmacol Exp Ther 2008;324:463-74
  • Coll AP. Treating Obesity? It’s in the Bag!. Cell Metab 2010;11:95-6
  • Guan XM, Metzger JM, Yang L, et al. Antiobesity effect of MK-5046, a novel bombesin receptor subtype-3 agonist. J Pharmacol Exp Ther 2011;336:356-64
  • Matsufuji T, Shimada K, Kobayashi S, et al. Synthesis and biological evaluation of novel chiral diazepine derivatives as bombesin receptor subtype-3 (BRS-3) agonists incorporating an antedrug approach. Bioorg Med Chem 2015;23:89-104
  • Matsufuji T, Shimada K, Kobayashi S, et al. Discovery of novel chiral diazepines as bombesin receptor subtype-3 (BRS-3) agonists with low brain penetration. Bioorg Med Chem Lett 2014;24:750-5
  • Reitman ML, Dishy V, Moreau A, et al. Pharmacokinetics and pharmacodynamics of MK-5046, a bombesin receptor subtype-3 (BRS-3) agonist, in healthy patients. J Clin Pharmacol 2012;52:1306-16
  • Sebhat IK, Franklin C, Lo MC, et al. Discovery of MK-5046, a potent, selective bombesin receptor subtype-3 agonist for the treatment of obesity. ACS Med Chem Lett 2011;2:43-7
  • Chobanian HR, Guo Y, Liu P, et al. The design and synthesis of potent, selective benzodiazepine sulfonamide bombesin receptor subtype 3 (BRS-3) agonists with an increased barrier of atropisomerization. Bioorg Med Chem 2012;20:2845-9
  • Chobanian HR, Guo Y, Liu P, et al. Discovery of MK-7725, A Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity. ACS Med Chem Lett 2012;3:252-6
  • Hadden M, Goodman A, Guo C, et al. Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorg Med Chem Lett 2010;20:2912-15
  • He S, Dobbelaar PH, Liu J, et al. Discovery of substituted biphenyl imidazoles as potent, bioavailable bombesin receptor subtype-3 agonists. Bioorg Med Chem Lett 2010;20:1913-17
  • Lateef DM, Breu-Vieira G, Xiao C, et al. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3. Am J Physiol Endocrinol Metab 2014;306:E681-7
  • Liu J, He S, Jian T, et al. Synthesis and SAR of derivatives based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorg Med Chem Lett 2010;20:2074-7
  • Liu P, Lanza TJJr, Chioda M, et al. Discovery of benzodiazepine sulfonamide-based bombesin receptor subtype 3 agonists and their unusual chirality. ACS Med Chem Lett 2011;2:933-7
  • Lo MM, Chobanian HR, Palyha O, et al. Pyridinesulfonylureas and pyridinesulfonamides as selective bombesin receptor subtype-3 (BRS-3) agonists. Bioorg Med Chem Lett 2011;21:2040-3
  • Carlton DL, Collin-Smith LJ, Daniels AJ, et al. Discovery of small molecule agonists for the bombesin receptor subtype 3 (BRS-3) based on an omeprazole lead. Bioorg Med Chem Lett 2008;18:5451-5
  • Gonzalez N, Mantey SA, Pradhan TK, et al. Characterization of putative GRP- and NMB-receptor antagonist’s interaction with human receptors. Peptides 2009;30:1473-86
  • Jensen RT, Coy DH. Progress in the development of potent bombesin receptor antagonists. Trends Pharmacol Sci 1991;12(1):13-19
  • Wang LH, Coy DH, Taylor JE, et al. Desmethionine alkylamide bombesin analogues: a new class of bombesin receptor antagonists with a potent antisecretory activity in pancreatic acini and antimitotic activity in Swiss 3T3 cells. Biochemistry (Mosc) 1990;29(3):616-22
  • Wang LH, Coy DH, Taylor JE, et al. Des-Met carboxyl-terminally modified analogues of bombesin function as potent bombesin receptor antagonists, partial agonists, or agonists. J Biol Chem 1990;265(26):15695-703
  • Heinz-Erian P, Coy DH, Tamura M, et al. [D-Phe12]bombesin analogues: a new class of bombesin receptor antagonists. Am J Physiol 1987;252:G439-42
  • Coy DH, Taylor JE, Jiang NY, et al. Short-chain pseudopeptide bombesin receptor antagonists with enhanced binding affinities for pancreatic acinar and Swiss 3T3 cells display strong antimitotic activity. J Biol Chem 1989;264:14691-7
  • von Schrenck T, Wang LH, Coy DH, et al. Potent bombesin receptor antagonists distinguish receptor subtypes. Am J Physiol 1990;259:G468-73
  • Maina T, Nock BA, Zhang H, et al. Species differences of bombesin analog interactions with GRP-R define the choice of animal models in the development of GRP-R-targeting drugs. J Nucl Med 2005;46:823-30
  • Coy DH, Wang LH, Jiang NZ, et al. Short chain bombesin pseudopeptides which are potent and more general bombesin receptor antagonists. Eur J Pharmacol 1990;190((#1/2):31-8
  • Tsuda T, Kusui T, Hou W, et al. Effect of gastrin-releasing peptide receptor number on receptor affinity, coupling, degradation and receptor modulation. Mol Pharmacol 1997;51(5):721-32
  • Ashwood V, Brownhill V, Higginbottom M, et al. PD 176252 - The first high affinity non-peptide gastrin-releasing peptide (BB2) receptor antagonist. Bioorg Med Chem 1998;8:2589-94
  • Matsumoto K, Yamada K, Wada E, et al. Bombesin receptor subtype-3 modulates plasma insulin concentration. Peptides 2003;24:83-90
  • Ladenheim EE, Hamilton NL, Behles RR, et al. Factors contributing to obesity in bombesin receptor subtype-3-deficient mice. Endocrinology 2008;149:971-8
  • Nakamichi Y, Wada E, Aoki K, et al. Functions of pancreatic beta cells and adipocytes in bombesin receptor subtype-3-deficient mice. Biochem Biophys Res Commun 2004;318:698-703
  • Yamada K, Ohki-Hamazaki H, Wada K. Differential effects of social isolation upon body weight, food consumption, and responsiveness to novel and social environment in bombesin receptor subtype-3 (BRS-3) deficient mice. Physiol Behav 2000;68:555-61
  • Yamada K, Santo-Yamada Y, Wada E, et al. Role of bombesin (BN)-like peptides/receptors in emotional behavior by comparison of three strains of BN-like peptide receptor knockout mice. Mol Psychiatry 2002;7:113-7, 6
  • Aoki K, Sun YJ, Aoki S, et al. Cloning, expression, and mapping of a gene that is upregulated in adipose tissue of mice deficient in bombesin receptor subtype-3. Biochem Biophys Res Commun 2002;290:1282-8
  • Maekawa F, Quah HM, Tanaka K, et al. Leptin resistance and enhancement of feeding facilitation by melanin-concentrating hormone in mice lacking bombesin receptor subtype-3. Diabetes 2004;53:570-6
  • Miltenberger RJ, Mynatt RL, Wilkinson JE, et al. The role of the agouti gene in the yellow obese syndrome. J Nutr 1997;127:1902S-7S
  • Ollmann MM, Wilson BD, Yang YK, et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997;278:135-8
  • Voisey J, Carroll L, van Daal A. Melanocortins and their receptors and antagonists. Curr Drug Targets 2003;4:586-97
  • Matsumoto K, Iijima H. Sibutramine sensitivity assay revealed a unique phenotype of bombesin BB3 receptor-deficient mice. Eur J Pharmacol 2003;473:41-6
  • Yamada K, Wada E, Imaki J, et al. Hyperresponsiveness to palatable and aversive taste stimuli in genetically obese (bombesin receptor subtype-3-deficient) mice. Physiol Behav 1999;66:863-7
  • Garcia-Belenguer S, Oliver C, Mormede P. Facilitation and feedback in the hypothalamo-pituitary-adrenal axis during food restriction in rats. J Neuroendocrinol 1993;5:663-8
  • Furutani N, Hondo M, Tsujino N, et al. Activation of bombesin receptor subtype-3 influences activity of orexin neurons by both direct and indirect pathways. J Mol Neurosci 2010;42:106-11
  • Waser B, Eltschinger V, Linder K, et al. Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer (177)Lu-AMBA. Eur J Nucl Med Mol Imaging 2007;34:95-100
  • Fleischmann A, Laderach U, Friess H, et al. Bombesin receptors in distinct tissue compartments of human pancreatic diseases. Lab Invest 2000;80:1807-17
  • Metzger JM, Gagen K, Raustad KA, et al. Body temperature as a mouse pharmacodynamic response to bombesin receptor subtype-3 agonists and other potential obesity treatments. Am J Physiol Endocrinol Metab 2010;299:E816-24
  • Hotta K, Matsukawa Y, Nishida M, et al. Mutation in bombesin receptor subtype-3 gene is not a major cause of obesity in the Japanese. Horm Metab Res 2000;32:33-4
  • Rinella ES, Still C, Shao Y, et al. Genome-wide association of single-nucleotide polymorphisms with weight loss outcomes after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 2013;98:E1131-6
  • Spalova J, Zamrazilova H, Vcelak J, et al. Neuromedin beta: P73T polymorphism in overweight and obese subjects. Physiol Res 2008;57(Suppl 1):S39-48
  • Bouchard L, Drapeau V, Provencher V, et al. Neuromedin beta: a strong candidate gene linking eating behaviors and susceptibility to obesity. Am J Clin Nutr 2004;80:1478-86
  • Pigeyre M, Bokor S, Romon M, et al. Influence of maternal educational level on the association between the rs3809508 neuromedin B gene polymorphism and the risk of obesity in the HELENA study. Int J Obes (Lond) 2010;34:478-86
  • Cowie CC, Rust KF, Ford ES, et al. Full accounting of diabetes and pre-diabetes in the U.S. population in 1988-1994 and 2005-2006. Diabetes Care 2009;32:287-94
  • International Diabetes Federation. IDF Diabetes Atlas updated poster. 6th edition. International Diabetes Foundation; Brussels, Belgium: 2014
  • Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 2011;378:169-81
  • Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999-2008. JAMA 2010;303:235-41
  • Bariatric surgery: an evidence-based analysis. Ont Health Technol Assess Ser 2005;5:1-148
  • Avenell A, Broom J, Brown TJ, et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess 2004;8:iii-182
  • Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014;8:CD003641
  • Shyangdan DS, Royle P, Clar C, et al. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev 2011;10:CD006423
  • Lund A, Knop FK, Vilsboll T. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: differences and similarities. Eur J Intern Med 2014;25:407-14
  • Vilsboll T, Christensen M, Junker AE, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 2012;344:d7771
  • Tokita K, Hocart SJ, Katsuno T, et al. Tyrosine 220 in the fifth transmembrane domain of the neuromedin B receptor is critical for the high selectivity of the peptoid antagonist PD168368. J Biol Chem 2001;276:495-504
  • Benya RV, Kusui T, Pradhan TK, et al. Expression and characterization of cloned human bombesin receptors. Mol Pharmacol 1995;47:10-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.