483
Views
9
CrossRef citations to date
0
Altmetric
Review

Membrane lipids as therapeutic targets for Parkinson’s disease: a possible link between Lewy pathology and membrane lipids

Bibliography

  • Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2014;29(13):1583-90
  • Truong DD, Bhidayasiri R, Wolters E. Management of non-motor symptoms in advanced Parkinson disease. J Neurol Sci 2008;266(1-2):216-28
  • Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990;54:823-7
  • Hattori N, Tanaka M, Ozawa T, et al. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 1991;30:563-71
  • Ben-Shachar D, Riederer P, Youdim MB. Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 1991;57:1609-14
  • Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999;22:123-44
  • Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003;53(Suppl 3):S26-36. discussion S36-8
  • Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012;441(2):523-40
  • Lewy FH. Paralysis agitans, I: Pathologische Anatomie. In: Lewandowsky M, editor. Handbuch der Neurologie. Springer Publishing; New York: NY: 1912. p. 920-33
  • Kosaka K. Lewy body disease and dementia with Lewy bodies. Proc Jpn Acad Ser B Phys Biol Sci 2014;90(8):301-6
  • McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65(12):1863-72
  • Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 2006;59(4):591-6
  • Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996;55(3):259-72
  • Jellinger KA. Formation and development of Lewy pathology: a critical update. J Neurol 2009;256(Suppl 3):270-9
  • Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997;388(6645):839-40
  • Spillantini MG, Crowther RA, Jakes R, et al. Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 1998;95(11):6469-73
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015. [Epub ahead of print]
  • Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24(2):197-211
  • Braak H, Sastre M, Bohl JR, et al. Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol 2007;113(4):421-9
  • Dickson DW, Fujishiro H, Orr C, et al. Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 2009;15(Suppl 3):S1-5
  • Jellinger KA. Synuclein deposition and non-motor symptoms in Parkinson disease. J Neurol Sci 2011;310(1-2):107-11
  • Gómez-Tortosa E, Newell K, Irizarry MC, et al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 1999;53(6):1284-91
  • Annerino DM, Arshad S, Taylor GM, et al. Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 2012;124(5):665-80
  • Jellinger KA. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 2008;116(1):1-16
  • Burke RE, Dauer WT, Vonsattel JP. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 2008;64(5):485-91
  • Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988;8:2804-15
  • Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett 1994;345:27-32
  • Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995;14:467-75
  • Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 2000;20:3214-20
  • George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995;15:361-72
  • Abeliovich A, Schmitz Y, Farinas I. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000;25:239-52
  • Cabin DE, Shimazu K, Murphy D. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 2002;22:8797-807
  • Nemani VM, Lu W, Berge V. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010;65:66-79
  • Polymeropoulos MH, Lavedan C, Leroy E. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276(5321):2045-7
  • Kruger R, Kuhn W, Muller T, Woitalla D. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998;18(2):106-8
  • Zarranz JJ, Alegre J, Gomez-Esteban JC. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004;55(2):164-73
  • Lesage S, Anheim M, Letournel F. French Parkinson’s Disease Genetics Study Group. G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 2013;73(4):459-71
  • Appel-Cresswell S, Vilarino-Guell C, Encarnacion M. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 2013;28(6):811-13
  • Proukakis C, Dudzik CG, Brier T. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013;80(11):1062-4
  • Singleton AB, Farrer M, Johnson J. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003;302(5646):841
  • Ibanez P, Bonnet AM, Debarges B. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004;364(9440):1169-71
  • Chartier-Harlin MC, Kachergus J, Roumier C. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004;364(9440):1167-9
  • Nishioka K, Hayashi S, Farrer MJ. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 2006;59(2):298-309
  • Giasson BI, Jakes R, Goedert M. A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson’s disease. J Neurosci Res 2000;59(4):528-33
  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007;447(7143):453-7
  • Weinreb PH, Zhen W, Poon AW. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 1996;35(43):13709-15
  • Bertoncini CW, Fernandez CO, Griesinger C. Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. J Biol Chem 2005;280(35):30649-52
  • Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998;273(16):9443-9
  • Comellas G, Lemkau LR, Zhou DH. Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles. J Am Chem Soc 2012;134(11):5090-9
  • Kubo S, Nemani VM, Chalkley RJ. A combinatorial code for the interaction of alpha-synuclein with membranes. J Biol Chem 2005;280(36):31664-72
  • Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron 2013;79(6):1044-66
  • Lee SJ, Masliah E. Neurodegeneration: aggregates feel the strain. Nature 2015;522(7556):296-7
  • Fabelo NV, Martin G, Santpere R. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 2011;17:1107-18
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997;387:569-72
  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1:31-9
  • Abbott SK, Li H, Muñoz SS. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease. Mov Disord 2014;29(4):518-26
  • Wu G, Lu ZH, Kulkarni N, Ledeen RW. Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 2012;90(10):1997-2008
  • Martinez Z, Zhu M, Han S, Fink AL. GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 2007;46(7):1868-77
  • den Jager WA. Sphingomyelin in Lewy inclusion bodies in Parkinson’s disease. Arch Neurol 1969;21:615-19
  • Gai WP, Yuan HX, Li XQ. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp Neurol 2000;166:324-33
  • Halliday GM, Ophof A, Broe M. Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain 2005;128(Pt 11):2654-64
  • Shachar T, Lo Bianco C, Recchia A. Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond. Mov Disord 2011;26(9):1593-604
  • Goker-Alpan O, Stubblefield BK, Giasson BI, Sidransky E. Glucocerebrosidase is present in alpha-synuclein inclusions in Lewy body disorders. Acta Neuropathol 2010;120(5):641-9
  • Wong K, Sidransky E, Verma A. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 2004;82(3):192-207
  • Suzuki K, Iseki E, Togo T. Neuronal and glial accumulation of alpha- and beta-synucleins in human lipidoses. Acta Neuropathol 2007;114(5):481-9
  • Saito Y, Suzuki K, Hulette CM, Murayama S. Aberrant phosphorylation of alpha-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol 2004;63(4):323-8
  • Chiba Y, Komori H, Takei S. Niemann-Pick disease type C1 predominantly involving the frontotemporal region, with cortical and brainstem Lewy bodies: an autopsy case. Neuropathology 2014;34(1):49-57
  • Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 2015;125:47-62
  • Schapira AH. Glucocerebrosidase and Parkinson disease: Recent advances. Mol Cell Neurosci 2015;66(Pt A):37-42
  • Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 2013;33(25):10195-208
  • Sandhoff K. Metabolic and cellular bases of sphingolipidoses. Biochem Soc Trans 2013;41(6):1562-8
  • Morgan NV, Westaway SK, Morton JE. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006;38(7):752-4
  • Gregory A, Westaway SK, Holm IE. Neurodegeneration associated with genetic defects in phospholipase A(2). Neurology 2008;71(18):1402-9
  • Paisán-Ruiz C, Li A, Schneider SA. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2012;33(4):814-23
  • Riku Y, Ikeuchi T, Yoshino H. Extensive aggregation of α-synuclein and tau in juvenile-onset neuroaxonal dystrophy: an autopsied individual with a novel mutation in the PLA2G6 gene-splicing site. Acta Neuropathol Commun 2013;1(1):12
  • Baburina I, Jackowski S. Cellular responses to excess phospholipid. J Biol Chem 1999;274(14):9400-8
  • Barbour SE, Kapur A, Deal CL. Regulation of phosphatidylcholine homeostasis by calcium-independent phospholipase A2. Biochim Biophys Acta 1999;1439(1):77-88
  • Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2010;285(27):20423-7
  • Manning-Boğ AB, Schüle B, Langston JW. Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 2009;30(6):1127-32
  • Mazzulli JR, Xu YH, Sun Y. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011;146(1):37-52
  • Schneider L, Zhang J. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson’s disease. Mol Neurodegener 2010;5:14
  • Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA. Lysosomal impairment in Parkinson’s disease. Mov Disord 2013;28(6):725-32
  • Sidransky E, Nalls MA, Aasly JO. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361(17):1651-61
  • Mitsui J, Mizuta I, Toyoda A. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol 2009;66(5):571-6
  • Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol 2012;11(11):986-98
  • Farrer MJ, Williams LN, Algom AA. Glucosidase-beta variations and Lewy body disorders. Parkinsonism Relat Disord 2009;15(6):414-16
  • Tsuang D, Leverenz JB, Lopez OL. GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology 2012;79(19):1944-50
  • Meivar-Levy I, Horowitz M, Futerman AH. Analysis of glucocerebrosidase activity using N-(1-[14C]hexanoyl)-D-erythroglucosylsphingosine demonstrates a correlation between levels of residual enzyme activity and the type of Gaucher disease. Biochem J 1994;303(Pt 2):377-82
  • Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992;88(5):513-23
  • Graber D, Salvayre R, Levade T. Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J Neurochem 1994;63(3):1060-8
  • Fortin DL, Troyer MD, Nakamura K. Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 2004;24(30):6715-23
  • Kubo S, Hatano T, Hattori N. Lipid rafts involvement in the pathogenesis of Parkinson’s disease. Front Biosci 2015;20:263-79
  • Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005;14(16):2387-98
  • Helenius A, Kuhlbrandt W, Osterhelt D, Simons K. Molecular Biology of the Cell, Chapter 12 Intracellular compartments and protein sorting. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, editors. The lipid bilayer. Abingdon, Oxfordshire: Garland Science; New York: NY: 2008
  • Poeppel P, Habetha M, Marcão A. Missense mutations as a cause of metachromatic leukodystrophy. Degradation of arylsulfatase A in the endoplasmic reticulum. FEBS J 2005;272(5):1179-88
  • Antelmi E, Rizzo G, Fabbri M. Arylsulphatase A activity in familial parkinsonism: a pathogenetic role? J Neurol 2014;261(9):1803-9
  • Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 2004;5(7):554-65
  • Raturi A, Simmen T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 2013;1833(1):213-24
  • Vance JE. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 2014;1841(4):595-609
  • Area-Gomez E. Assessing the function of mitochondria-associated ER membranes. Methods Enzymol 2014;547:181-97
  • van Vliet AR, Verfaillie T, Agostinis P. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 2014;1843(10):2253-62
  • Poston CN, Duong E, Cao Y, Bazemore-Walker CR. Proteomic analysis of lipid raft-enriched membranes isolated from internal organelles. Biochem Biophys Res Commun 2011;415(2):355-60
  • Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson’s disease progression. Acta Neuropathol 2008;115(4):385-98
  • Pienaar IS, Götz J, Feany MB. Parkinson’s disease: insights from non-traditional model organisms. Prog Neurobiol 2010;92(4):558-71
  • Sardi SP, Clarke J, Kinnecom C. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 2011;108(29):12101-6
  • Schneider JS, Gollomp SM, Sendek S. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 2013;324(1-2):140-8
  • Sandhoff R, Geyer R, Jennemann R. Novel class of glycosphingolipids involved in male fertility. J Biol Chem 2005;280(29):27310-18
  • Manev H, Favaron M, Vicini S. Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. J Pharmacol Exp Ther 1990;252(1):419-27
  • Wu G, Lu ZH, Wang J. Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci 2005;25(47):11014-22
  • Schneider JS, DiStefano L. Oral administration of semisynthetic sphingolipids promotes recovery of striatal dopamine concentrations in a murine model of parkinsonism. Neurology 1994;44(4):748-50
  • Schneider JS, DiStefano L. Response of the damaged dopamine system to GM1 and semisynthetic gangliosides: effects of dose and extent of lesion. Neuropharmacology 1995;34(5):489-93
  • Svennerholm L, Boström K, Fredman P. Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1989;1005(2):109-17
  • Agim ZS, Cannon JR. Dietary factors in the etiology of Parkinson’s disease. Biomed Res Int 2015;2015:672838
  • Abbott RD, Ross GW, White LR, Sanderson WT. Environmental, life-style, and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu-Asia Aging Study. J Neurol 2003;250(Suppl 3):III30-9
  • Hellenbrand W, Seidler A, Boeing H. Diet and Parkinson’s disease. I: A possible role for the past intake of specific foods and food groups. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 1996;47(3):636-43
  • Hellenbrand W, Boeing H, Robra BP, Seidler A. Diet and Parkinson’s disease. II: A possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology 1996;47(3):644-50
  • Chen H, Zhang SM, Hernán MA. Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 2003;157(11):1007-14
  • da Silva TM, Munhoz RP, Alvarez C. Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord 2008;111(2-3):351-9
  • Kamel F, Goldman SM, Umbach DM. Dietary fat intake, pesticide use, and Parkinson’s disease. Parkinsonism Relat Disord 2014;20(1):82-7
  • Bendikov-Bar I, Maor G, Filocamo M, Horowitz M. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol Dis 2013;50(2):141-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.