892
Views
41
CrossRef citations to date
0
Altmetric
Review

Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification

, , &
Pages 705-720 | Received 30 Jun 2015, Accepted 24 Nov 2015, Published online: 19 Dec 2015

Bibliography

  • Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–1281.
  • Holohan C, Schaeybroeck SV. Longley DB and Johnston PG. Cancer drug resistance: an evolving paradigm. Nature. 2013;13:714–724.
  • Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Clin Invest. 2011;121(7):2750–2767. DOI:10.1172/JCI45014.
  • The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490(7418):61–70. DOI:10.1038/nature11412.
  • Balko JM, Giltnane JM, Wang K. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4(2):232–245. DOI:10.1158/2159-8290.CD-13-0286.
  • Montagna E, Maisonneuve P, Rotmensz N, et al. Heterogeneity of triple-negative breast cancer: histologic subtyping to inform the outcome. Clin Breast Cancer. 2013;13:31–39.
  • Masuda H, Baggerly KA, Wang Y, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–5540.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.
  • Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.
  • Hühn D, Bolck HA, Sartori AA. Targeting DNA double-strand break signalling and repair: recent advances in cancer therapy. Swiss Med Wkly. 2013;143:w13837.
  • Rodriguez A, Makris A, Wu MF, et al. DNA repair signature is associated with anthracycline response in triple negative breast cancer patients. Breast Cancer Res Treat. 2010;123:189–196.
  • Ha K, Fiskus W, Choi DS, et al. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget. 2014;5(14):5637–5650.
  • Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.
  • Mrklić I, Pogorelić Z, Ćapkun V, et al. Expression of topoisomerase II-α in triple negative breast cancer. Appl Immunohistochem Mol Morphol. 2014;22(3):182–187. DOI:10.1097/PAI.0b013e3182910967.
  • Von Minckwitz G, Muller BM, Loibl S, et al. Cytoplasmic poly (adenosine diphosphate–ribose) polymerase expression is predictive and prognostic in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol. 2011;29:2150–2157.
  • Anders CK, Winer EP, Ford JM, et al. PARP inhibition: “targeted” therapy for triple negative breast cancer. Clin Cancer Res. 2010;16(19):4702–4710.
  • Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–244.
  • Isakoff SJ, Overmoyer B, Tung NM, et al. A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol. 2010;28(15 Suppl.):abstract 1019.
  • Ibrahim YH, García-García C, Serra V, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2:1036–1047.
  • Juvekar A, Burga LN, Hu H, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2(11):1048–1063.
  • Tian M, Zhong Y, Zhou F, et al. Platinum-based therapy for triple-negative breast cancer treatment: a meta-analysis. Mol Clin Oncol. 2015;3:720–724.
  • Silver DP, Richardson AL, Eklund AC, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–1153.
  • Ozkan C, Gumuskaya B, Yaman S, et al. ERCC1 expression in TNBC. J Buon. 2012;17:271–276.
  • O’Reilly EA, Gubbins L, Sharma S. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clinical. 2015;3:257–275.
  • Ossovskaya V, Wang Y, Budoff A. Exploring molecular pathways of triple-negative breast cancer. Genes Cancer. 2011;2(9):870–879.
  • Zhou FF, Yan M, Guo GF, et al. Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells. Med Oncol. 2011;28:1302–1307.
  • Caldas-Lopes E, Cerchietti L, Ahn JH, et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. PNAS. 2009 19;106(20):8368–8373.
  • Mataga MA, Rosenthal S, Heerboth S, et al. Anti-breast cancer effects of histone deacetylase inhibitors and calpain inhibitor. Anticancer Res. 2012;32:2523–2530.
  • Rao R, Balusu R, Fiskus W, et al. Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther. 2012;11(4):973–983.
  • Librizzi M, Longo A, Chiarelli R, et al. Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDAMB231 breast cancer cells. Chem Res Toxicol. 2012;25:2608–2616.
  • Tate CR, Rhodes LV, Segar HC, et al. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 2012;14:R79.
  • Palmieri D, Lockman PR, Thomas FC, et al. Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res. 2009;15(19):6148–6157.
  • Rhodes LV, Tate CR, Segar HC, et al. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat. 2014;145:593–604.
  • Robinson TJW, Liu JC, Vizeacoumar F. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PLoS One. 2013;8(11):e78641. DOI:10.1371/journal.pone.0078641.
  • McClendon AK, Jeffry LD, Rivadeneira DB, et al. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle. 2012;11(14):2747–2755.
  • Horiuchi D, Kusdra L, Huskey NE, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–696.
  • Gasparini P, Fassan M, Cascione L, et al. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options. PLoS One. 2014;9(2):e88525. DOI:10.1371/journal.pone.0088525.
  • Murray S, Briasoulis E, Linardou H, et al. Mechanisms of taxane resistance in breast cancer: a systematic review. MOJ. 2011;1:14–29.
  • Thomas ES, Gomez HL, Li RK, et al. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol. 2007;25:5210–5217.
  • Al-Ejeh F, Simpson PT, Saunus JM, et al. Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis. 2014;3:e124. DOI:10.1038/oncsis.2014.41.
  • Maia ARR, De Man J, Boon U. Inhibition of the spindle assembly checkpoint kinase TTK enhances the efficacy of docetaxel in a triple-negative breast cancer model. Ann Oncol. 2015;1–13. DOI:10.1093/annonc/mdv293.
  • Varna M, Bousquet G, Plassa LF, et al. TP53 status and response to treatment in breast cancers. J Biomed Biotechnol. 2011;Article ID 284584:9 p.
  • Ma CX, Cai S, Li S, et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest. 2012;122(4):1541–1552.
  • Kim T, Han W, Kim MK, et al. Predictive significance of p53, Ki-67, and Bcl-2 expression for pathologic complete response after neoadjuvant chemotherapy for triple-negative breast cancer. Breast Cancer. 2015;18(1):16–21.
  • Lehmann-Che J, André F, Desmedt C, et al. Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers. Oncologist. 2010;15:246–252.
  • Alco G, Bozdogan A, Selamoglu D, et al. Clinical and histopathological factors associated with Ki-67 expression in breast cancer patients. Oncol Lett. 2015;9:1046–1054.
  • Tan QX, Qin QH, Yang WP, et al. Prognostic value of Ki67 expression in HR-negative breast cancer before and after neoadjuvant chemotherapy. Int J Clin Exp Pathol. 2014;7(10):6862–6870.
  • Li H, Han X, Liu Y, et al. Ki67 as a predictor of poor prognosis in patients with triple-negative breast cancer. Oncol Lett. 2015;9:149–152.
  • Tökés A-M, Szász AM, Geszti F, et al. Expression of proliferation markers Ki67, cyclin A, geminin and aurora-kinase A in primary breast carcinomas and corresponding distant metastases. J Clin Pathol. 2015;1–9. DOI:10.1136/jclinpath-2014-202607.
  • Blanchard Z, Mullins N, Ellipeddi P, et al. Overexpression promotes imatinib sensitive breast cancer: a novel treatment approach for aggressive breast cancers, including a subset of triple negative. PLoS One. 2014;9(4):e95663.
  • Di Bonito M, Cantile M, Collina F, et al. Overexpression of cell cycle progression inhibitor geminin is associated with tumor stem-like phenotype of triple-negative breast cancer. J Breast Cancer. 2012;15(2):162–171.
  • Flynn JF, Wong C, Jm W. Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. J Oncol. 2009;Article ID 526963:16 p.
  • Cho EY, Chang MH, Choi YL, et al. Potential candidate biomarkers for heterogeneity in triple-negative breast cancer (TNBC). Cancer Chemother Pharmacol. 2011;68:753–761.
  • Nogi H, Kobayashi T, Suzuki M, et al. EGFR as paradoxical predictor of chemosensitivity and outcome among triple-negative breast cancer. Oncol Rep. 2009;21:413–417.
  • Tang Y, Zhu L, Li Y, et al. Overexpression of epithelial growth factor receptor (EGFR) predicts better response to neo-adjuvant chemotherapy in patients with triple-negative breast cancer. J Transl Med. 2012;10(Suppl 1):S4.
  • Masuda H, Zhang D, Bartholomeusz C, et al. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 2012;136(2). DOI:10.1007/s10549-012-2289-9.
  • Sohn J, Liu S, Parinyanitikul N, et al. cMET activation and EGFR-directed therapy resistance in triple-negative breast cancer. J Cancer. 2014;5(9):745–753.
  • Carey LA, Rugo HS, Marcom PK, et al. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol. 2012;30(21):2615–2623.
  • Baselga J, Gomez P, Greil R, et al. Randomized phase II study of the anti–epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2013;31(20):2586–2592.
  • Al-Ejeh F, Wei S, Mariska M. Treatment of triple-negative breast cancer using anti-EGFR–directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor. J Nucl Med. 2013;54:913–921.
  • Sun T, Aceto N, Meerbrey KL, et al. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell. 2011;144:703–718.
  • Malin D, Strekalova E, Petrovic V, et al. αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res. 2014;20(1):56–67.
  • Yi YW, Hong W, Kang HJ, et al. Inhibition of the PI3K/AKT pathway potentiates cytotoxicity of EGFR kinase inhibitors in triple-negative breast cancer cells. J Cell Mol Med. 2013;175:648–656.
  • Inanc M, Ozkan M, Karaca H, et al. Cytokeratin 5/6, c-Met expressions, and PTEN loss prognostic indicators in triple-negative breast cancer. Med Oncol. 2014;31:801.
  • Zagouri F, Bago-Horvath Z, Rossler F, et al. High MET expression is an adverse prognostic factor in patients with triple-negative breast cancer. Br J Cancer. 2013; 108:1100–1105.
  • Kim YJ, Jong-Sun C, Seo J, et al. MET is a potential target for use in combination therapy with EGFR inhibition in triple-negative/basal-like breast cancer. Int J Cancer. 2014;134:2424–2436.
  • Jansson S, Bendah PO, Dorthe AG, et al. The three receptor tyrosine kinases c-KIT, VEGFR2 and PDGFRa, closely spaced at 4q12, show increased protein expression in triple-negative breast cancer. PLoS One. 2014;9(7):e102176. DOI:10.1371/journal.pone.0102176.
  • Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–175.
  • Kriegsmann M, Endris V, Wolf T, et al. Mutational profiles in triple-negative breast cancer defined by ultradeep multigene sequencing show high rates of PI3K pathway alterations and clinically relevant entity subgroup specific differences. Oncotarget. 2014;5(20):9952–9965.
  • Singh JC, Novik Y, Stein S, et al. Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res. 2014;16:R32.
  • Liu JC, Voisin V, Wang S, et al. Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med. 2014;6:1542–1560.
  • Tryfonopoulos D, Walsh S, Collins DM, et al. Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol. 2011;22:2234–2240.
  • Ortiz-Ruiz MJ, Alvarez-Fernandez S, Parrott T, et al. Therapeutic potential of ERK5 targeting in triple negative breast cancer. Oncotarget. 2014;5(22):11308–11318.
  • Al-Ejeh F, Miranda M, Shi W, et al. Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Oncotarget. 2014;5(10):3145–3158.
  • Pistelli M, Caramanti M, Biscotti T, et al. Androgen receptor expression in early triple-negative breast cancer: clinical significance and prognostic associations. Cancers. 2014;6:1351–1362.
  • McGhan LJ, McCullough AE, Protheroe CA, et al. Androgen receptor-positive triple negative breast cancer: a unique breast cancer subtype. Ann Surg Oncol. 2014;21:361–367.
  • Mrklić I, Pogorelić Z, Ćapkun V, et al. Expression of androgen receptors in triple negative breast carcinomas. Acta Histochemica. 2013;115(4):344–348.
  • McNamara KM, Yoda T, Miki Y, et al. Androgenic pathway in triple negative invasive ductal tumors: its correlation with tumor cell proliferation. Cancer Sci. 2013;104:639–346.
  • Thike AA, Chong YZ, Cheok PY, et al. Loss of androgen receptor expression predicts early recurrence in triple negative and basal-like breast cancer. Mod Pathol. 2014;27:352–360.
  • Shapiro DJ, Mao C, Cherian MT. Small molecule inhibitors as probes for estrogen and androgen receptor action. J Biol Chem. 2011;286(6):4043–4048.
  • Lehmann BD, Bauer JA, Schafer JM, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16:406.
  • Cuenca-López MD, Montero JC, Morales JC, et al. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling. BMC Cancer. 2014;14:302.
  • Koletsa T, Stavridi F, Bobos M, et al. αB-crystallin is a marker of aggressive breast cancer behavior but does not independently predict for patient outcome: a combined analysis of two randomized studies. BMC Clin Pathol. 2014;14:28.
  • Umemura S, Shirane M, Takekoshi S, et al. High expression of thymidine phosphorylase in basal-like breast cancers: stromal expression in EGFR-and/or CK5/6-positive breast cancers. Oncol Lett. 2010;1:261–266.
  • Abdel-Fatah TMA, Perry C, Dickinson P, et al. Bcl2 is an independent prognostic marker of triple negative breast cancer (TNBC) and predicts response to anthracycline combination (ATC) chemotherapy (CT) in adjuvant and neoadjuvant settings. Ann Oncol. 2013;24:2801–2807.
  • Bouchalova K, Kharaishvili G, Bouchal J, et al. Triple negative breast cancer - BCL2 in prognosis and prediction. Rev Curr Drug Targets. 2014;15:1166–1175.l2.
  • Alikanoglu AS, Yildirim M, Suren D, et al. Expression of cyclooxygenase-2 and Bcl-2 in breast cancer and their relationship with triple-negative disease. J Buon. 2014;19(2):430–434.
  • Zhou L, Li K, Luo Y, et al. Novel prognostic markers for patients with triple-negative breast cancer. Hum Pathol. 2013;44:2180–2187.
  • Rahman M, Davis SR, Pumphrey JG, et al. TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat. 2009;113(2):217–230. DOI:10.1007/s10549-008-9924-5. Epub 2008 Feb 12.
  • Huck B, Duss S, Hausser A, et al. Elevated protein kinase D3 (PKD3) expression supports proliferation of triple-negative breast cancer cells and contributes to mTORC1-S6K1 pathway activation. J Biol Chem. 2014;289(6):3138–3147.
  • Luo R-Z, Yuan Z-Y, Li M, et al. Accumulation of p62 is associated with poor prognosis in patients with triple-negative breast cancer. Onco Targets Ther. 2013;6:883–888.
  • Chen S, Jiang YZ, Huang L, et al. The residual tumor autophagy marker LC3B serves as a prognostic marker in local advanced breast cancer after neoadjuvant chemotherapy. Clin Cancer Res. 2013;15(19):6853–6862.
  • Stagg J, Allard B. Immunotherapeutic approaches in triple negative breast cancer: latest research and clinical prospects. Ther Adv Med Oncol. 2013;5(3):169–181.
  • Rathore AS, Goel MM, Makker A, et al. Prognostic impact of CD3 tumor infiltrating lymphocytes in triple-negative breast cancer. Indian J Clin Pract. 2013;24(4):376–380.
  • Engel JB, Honig A, Kapp M, et al. Mechanisms of tumor immune escape in triple-negative breast cancers (TNBC) with and without mutated BRCA 1. Arch Gynecol Obstet. 2014;289:141–147.
  • Lopes LF, Guembarovski RL, Guembarovski AL, et al. FOXP3 transcription factor: a candidate marker for susceptibility and prognosis in triple negative breast cancer. Biomed Res Int. 2014;2014:Article ID 341654, 7 p.
  • Dolan DE, Pharm D, Gupta S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014;21(3):231–237.
  • Huang O, Zhang W, Zhi Q, et al. Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells. Exp Biol Med. 2015;240:426–437.
  • Emens LA, Braiteh FS, Cassier P, et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. In: Proceedings of the 106th annual meeting of the american association for cancer research; 2015 Apr 18–22; Philadelphia, PA. Philadelphia (PA): AACR; 2015. Abstract nr {2859}.
  • West NR, Milne K, Truong PT. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126.
  • Allard B, Turcotte M, Stagg J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opin Ther Targets. 2014;18(8):863–881.
  • Loi S, Pommey S, Haibe-Kains B. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. PNAS. 2013;110(27):11091–11096.
  • Khaled W, Lee SC, Stingl J, et al. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun. 2015;6:5987. DOI:10.1038/ncomms6987.
  • Kolacinska A, Morawiec J, Fendler W, et al. Association of microRNAs and pathologic response to preoperative chemotherapy in triple negative breast cancer: preliminary report. Mol Biol Rep. 2014;41:2851–2857.
  • Dent R, Hanna WM, Trudeau M, et al. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2009;115:423–428.
  • Bender RJ, Gabhann FM. Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer. PLoS One. 2013;8(5):e61788. DOI:10.1371/journal.pone.0061788.
  • Gutwein LG, Al-Quran SZ, Fernando S, et al. Tumor endothelial marker 8 expression in triple-negative breast cancer. Anticancer Res. 2011;31:3417–3422.
  • Eccles SA, Aboagye EO, Ali S. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Res. 2013;15:R92.
  • Aberasturi AL, Calvo A. TMPRSS4: an emerging potential therapeutic target in caner. Br J Cancer. 2014;1–5. DOI:10.1038/bjc.2014.403.
  • Cheng D, Kong H, Li Y. TMPRSS4 as a poor prognostic factor for triple-negative breast cancer. Int J Mol Sci. 2013;14:14659–14668.
  • Nakagawa M, Bando Y, Nagao T, et al. Expression of P53, Ki-67, E-Cadherin, N-Cadherin and Top2a in triple-negative breast cancer. Anticancer Res. 2011;31:2389–2394.
  • Kashiwagi S, Yashiro M, Takashima T, et al. Advantages of adjuvant chemotherapy for patients with triple-negative breast cancer at stage II: usefulness of prognostic markers E-cadherin and Ki67. Breast Cancer Res. 2011;13:R122.
  • Yu S, Wang X, Liu G, et al. High level of CXCR4 in triple-negative breast cancer specimens associated with a poor clinical outcome. Acta Med Okayama. 2013;67(6):369–375.
  • Ma F, Li H, Wang H, et al. Enriched CD44+/CD24− population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett. 2014;353:153–159.
  • Chen DR, Lu DY, Lin HY, et al. Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. Biomed Res Int. 2014;2014:Article ID 532161, 10 p.
  • Alamgeer M, Ganju V, Kumar B, et al. Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer. Breast Cancer Res. 2014;16:R44.
  • Cancello G, Bagnardi V, Sangalli C, et al. Phase II study with epirubicin, cisplatin and infusional fluorouracil (ECF) followed by weekly paclitaxel plus metronomic cyclophosphamide as preoperative treatment of triple negative breast cancer. Clin Breast Cancer. 2015. DOI:10.1016/j.clbc.2015.03.002.
  • Gerber B, Loibl S, Eidtmann H, et al. Neoadjuvant bevacizumab and anthracycline–taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol. 2013;24:2978–2984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.