212
Views
12
CrossRef citations to date
0
Altmetric
Review

Inositide-dependent signaling pathways as new therapeutic targets in myelodysplastic syndromes

, , , , , , , , & show all
Pages 677-687 | Received 08 Oct 2015, Accepted 25 Nov 2015, Published online: 17 Dec 2015

References

  • Ramazzotti G, Faenza I, Fiume R, et al. The physiology and pathology of inositide signaling in the nucleus. J Cell Physiol. 2011;226(1):14–20.
  • Martelli AM, Fiume R, Faenza I, et al. Nuclear phosphoinositide specific phospholipase C (PI-PLC)-beta 1: a central intermediary in nuclear lipid-dependent signal transduction. Histol Histopathol. 2005;20(4):1251–1260.
  • Martelli AM, Follo MY, Evangelisti C, et al. Nuclear inositol lipid metabolism: more than just second messenger generation? J Cell Biochem. 2005 Oct 1;96(2):285–292.
  • Follo MY, Manzoli L, Poli A, et al. PLC and PI3K/Akt/mTOR signalling in disease and cancer. Adv Biol Regul. 2015 Jan;57:10–16.
  • Keune WJ, Jones DR, Divecha N. PtdIns5P and Pin1 in oxidative stress signaling. Adv Biol Regul. 2013 May;53(2):179–189.
  • Yang YR, Follo MY, Cocco L, et al. The physiological roles of primary phospholipase C. Adv Biol Regul. 2013;53(3):232–241.
  • Cocco L, Gilmour RS, Ognibene A, et al. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J. 1987 Dec 15;248(3):765–770.
  • Martelli AM, Gilmour RS, Bertagnolo V, et al. Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature. 1992 Jul 16;358(6383):242–245.
  • Ramazzotti G, Faenza I, Follo MY, et al. Nuclear phospholipase C in biological control and cancer. Crit Rev Eukaryot Gene Expr. 2011;21(3):291–301.
  • Shah ZH, Jones DR, Sommer L, et al. Nuclear phosphoinositides and their impact on nuclear functions. Febs J. 2013;280(24):6295–6310.
  • Faenza I, Billi AM, Follo MY, et al. Nuclear phospholipase C signaling through type 1 IGF receptor and its involvement in cell growth and differentiation. Anticancer Res. 2005;25(3B):2039–2041.
  • Follo MY, Faenza I, Piazzi M, et al. Nuclear PI-PLCbeta1: an appraisal on targets and pathology. Adv Biol Regul. 2014 Jan;54:2–11.
  • Poli A, Mongiorgi S, Cocco L, et al. Protein kinase C involvement in cell cycle modulation. Biochem Soc Trans. 2014;42(5):1471–1476.
  • Matkovic K, Brugnoli F, Bertagnolo V, et al. The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells. Leukemia. 2006;20(6):941–951.
  • Ciechomska I, Pyrzynska B, Kazmierczak P, et al. Inhibition of Akt kinase signalling and activation of Forkhead are indispensable for upregulation of FasL expression in apoptosis of glioma cells. Oncogene. 2003 Oct 23;22(48):7617–7627.
  • Cocco L, Follo MY, Manzoli L, et al. Phosphoinositide-specific phospholipase C in health and disease. J Lipid Res. 2015;56(10):1853–1860.
  • Rhee SG. Reflections on the days of phospholipase C. Adv Biol Regul. 2013 Sep;53(3):223–231.
  • Suh PG, Park JI, Manzoli L, et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 2008 Jun 30;41(6):415–434.
  • Cocco L, Follo MY, Faenza I, et al. Physiology and pathology of nuclear phospholipase C beta1. Adv Enzyme Regul. 2011;51(1):2–12.
  • Follo MY, Faenza I, Fiume R, et al. Revisiting nuclear phospholipase C signalling in MDS. Adv Biol Regul. 2012;52(1):2–6.
  • Follo MY, Marmiroli S, Faenza I, et al. Nuclear phospholipase C beta1 signaling, epigenetics and treatments in MDS. Adv Biol Regul. 2013;53(1):2–7.
  • Garcia Del Cano G, Montana M, Aretxabala X, et al. Nuclear phospholipase C-beta1 and diacylglycerol LIPASE-alpha in brain cortical neurons. Adv Biol Regul. 2014 Jan;54:12–23.
  • Ross CA, MacCumber MW, Glatt CE, et al. Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc Natl Acad Sci U S A. 1989;86(8):2923–2927.
  • Yamakawa A, Nishizawa M, Fujiwara KT, et al. Molecular cloning and sequencing of cDNA encoding the phosphatidylinositol kinase from rat brain. J Biol Chem. 1991 Sep 15;266(26):17580–17583.
  • Hannan AJ, Kind PC, Blakemore C. Phospholipase C-beta1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex. Neuropharmacology. 1998 Apr-May;37(45):593–605.
  • Spires TL, Molnar Z, Kind PC, et al. Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-beta1 signalling. Cereb Cortex. 2005;15(4):385–393.
  • Choi WC, Gerfen CR, Suh PG, et al. Immunohistochemical localization of a brain isozyme of phospholipase C (PLC III) in astroglia in rat brain. Brain Res. 1989 Oct 9;499(1):193–197.
  • Kim D, Jun KS, Lee SB, et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature. 1997 Sep 18;389(6648):290–293.
  • Kurian MA, Meyer E, Vassallo G, et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain. 2010 Oct;133(10):2964–2970.
  • Poduri A, Chopra SS, Neilan EG, et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia. 2012 Aug;53(8):e146–e150.
  • Lo Vasco VR, Cardinale G, Polonia P. Deletion of PLCB1 gene in schizophrenia-affected patients. J Cell Mol Med. 2012 Apr;16(4):844–851.
  • Lo Vasco VR, Longo L, Polonia P. Phosphoinositide-specific phospholipase C beta1 gene deletion in bipolar disorder affected patient. J Cell Commun Signal. 2013 Mar;7(1):25–29.
  • Faenza I, Ramazzotti G, Bavelloni A, et al. Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology. 2007;148(3):1108–1117.
  • O’Carroll SJ, Mitchell MD, Faenza I, et al. Nuclear PLCbeta1 is required for 3T3-L1 adipocyte differentiation and regulates expression of the cyclin D3-cdk4 complex. Cell Signal. 2009;21(6):926–935.
  • Follo MY, Russo D, Finelli C, et al. Epigenetic regulation of nuclear PI-PLCbeta1 signaling pathway in low-risk MDS patients during azacitidine treatment. Leukemia. 2012;26(5):943–950.
  • Follo MY, Mongiorgi S, Clissa C, et al. Activation of nuclear inositide signalling pathways during erythropoietin therapy in low-risk MDS patients. Leukemia. 2012;26(12):2474–2482.
  • Cocco L, Follo MY, Faenza I, et al. Inositide signaling in the nucleus: from physiology to pathology. Adv Enzyme Regul. 2010;50(1):2–11.
  • Manzoli L, Mongiorgi S, Clissa C, et al. Strategic role of nuclear inositide signalling in myelodysplastic syndromes therapy. Mini Rev Med Chem. 2014;14(11):873–883.
  • Follo MY, Mongiorgi S, Finelli C, et al. Nuclear inositide signaling in myelodysplastic syndromes. J Cell Biochem. 2010 Apr 15;109(6):1065–1071.
  • Yang YR, Choi JH, Chang JS, et al. Diverse cellular and physiological roles of phospholipase C-gamma1. Adv Biol Regul. 2012;52(1):138–151.
  • Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013 Jan;14(1):7–23.
  • Lucas G, Hendolin P, Harkany T, et al. Neurotrophin-4 mediated TrkB activation reinforces morphine-induced analgesia. Nat Neurosci. 2003;6(3):221–222.
  • Jang HJ, Yang YR, Kim JK, et al. Phospholipase C-gamma1 involved in brain disorders. Adv Biol Regul. 2013;53(1):51–62.
  • Manzoli L, Martelli AM, Billi AM, et al. Nuclear phospholipase C: involvement in signal transduction. Prog Lipid Res. 2005;44(4):185–206.
  • Koss H, Bunney TD, Behjati S, et al. Dysfunction of phospholipase Cgamma in immune disorders and cancer. Trends Biochem Sci. 2014;39(12):603–611.
  • Behjati S, Tarpey PS, Sheldon H, et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014;46(4):376–379.
  • Kunze K, Spieker T, Gamerdinger U, et al. A recurrent activating PLCG1 mutation in cardiac angiosarcomas increases apoptosis resistance and invasiveness of endothelial cells. Cancer Res. 2014 Nov 1;74(21):6173–6183.
  • Raimondi C, Falasca M. Phosphoinositides signalling in cancer: focus on PI3K and PLC. Adv Biol Regul. 2012 Jan;52(1):166–182.
  • Lattanzio R, Piantelli M, Falasca M. Role of phospholipase C in cell invasion and metastasis. Adv Biol Regul. 2013 Sep;53(3):309–318.
  • Yang J, Song X, Chen Y, et al. PLCgamma1-PKCgamma signaling-mediated Hsp90alpha plasma membrane translocation facilitates tumor metastasis. Traffic. 2014;15(8):861–878.
  • Choi JH, Yang YR, Lee SK, et al. Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation. Cell Signal. 2007;19(8):1784–1796.
  • Xie Z, Peng J, Pennypacker SD, et al. Critical role for the catalytic activity of phospholipase C-gamma1 in epidermal growth factor-induced cell migration. Biochem Biophys Res Commun. 2010 Aug 27;399(3):425–428.
  • Davies G, Martin TA, Ye L, et al. Phospholipase-C gamma-1 (PLCgamma-1) is critical in hepatocyte growth factor induced in vitro invasion and migration without affecting the growth of prostate cancer cells. Urol Oncol. 2008;26(4):386–391.
  • Satake A, Schmidt AM, Archambault A, et al. Differential targeting of IL-2 and T cell receptor signaling pathways selectively expands regulatory T cells while inhibiting conventional T cells. J Autoimmun. 2013 Aug;44:13–20.
  • Ebinu JO, Stang SL, Teixeira C, et al. RasGRP links T-cell receptor signaling to Ras. Blood. 2000 May 15;95(10):3199–3203.
  • Vaque JP, Gomez-Lopez G, Monsalvez V, et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood. 2014 Mar 27;123(13):2034–2043.
  • Liao HJ, Kume T, McKay C, et al. Absence of erythrogenesis and vasculogenesis in Plcg1- deficient mice. J Biol Chem. 2002 Mar 15;277(11):9335–9341.
  • Jing CB, Chen Y, Dong M, et al. Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish. Dev Biol. 2013 Feb 1;374(1):24–31.
  • Alimandi M, Heidaran MA, Gutkind JS, et al. PLC-gamma activation is required for PDGF-betaR-mediated mitogenesis and monocytic differentiation of myeloid progenitor cells. Oncogene. 1997 Jul 31;15(5):585–593.
  • Rameh LE, Rhee SG, Spokes K, et al. Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. J Biol Chem. 1998 Sep 11;273(37):23750–23757.
  • Kriplani N, Hermida MA, Brown ER, et al. Class I PI 3-kinases: function and evolution. Adv Biol Regul. 2015 Sep;59:53–64.
  • Toker A, Marmiroli S. Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul. 2014 May;55:28–38.
  • McCubrey JA, Davis NM, Abrams SL, et al. Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul. 2014 Sep;56:81–107.
  • McCubrey JA, Abrams SL, Fitzgerald TL, et al. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul. 2015 Jan;57:75–101.
  • Martelli AM, Evangelisti C, Follo MY, et al. Targeting the phosphatidylinositol 3- kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem. 2011;18(18):2715–2726.
  • Liu P, Gan W, Chin YR, et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov. 2015;5(11):1194–1209.
  • Yang G, Murashige DS, Humphrey SJ, et al. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep. 2015 Aug 11;12(6):937–943.
  • Jhanwar-Uniyal M, Jeevan D, Neil J, et al. Deconstructing mTOR complexes in regulation of glioblastoma multiforme and its stem cells. Adv Biol Regul. 2013;53(2):202–210.
  • Boultwood J, Yip BH, Vuppusetty C, et al. Activation of the mTOR pathway by the amino acid (L)-leucine in the 5q- syndrome and other ribosomopathies. Adv Biol Regul. 2013;53(1):8–17.
  • Wong PM, Feng Y, Wang J, et al. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015 Aug 27;6:8048.
  • Maiese K, Chong ZZ, Shang YC, et al. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets. 2012;16(12):1203–1214.
  • Guida M, Maraldi T, Beretti F, et al. Nuclear Nox4-derived reactive oxygen species in myelodysplastic syndromes. Biomed Res Int. 2014;2014( Article ID 456937):1–11.
  • Fransecky L, Mochmann LH, Baldus CD. Outlook on PI3K/AKT/mTOR inhibition in acute leukemia. Mol Cell Ther. 2015;3(2):1–17.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–293.
  • Jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: a brief overview. Adv Biol Regul. 2015 May;58:28–37.
  • Corey SJ, Minden MD, Barber DL, et al. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7(2):118–129.
  • Elias HK, Schinke C, Bhattacharyya S, et al. Stem cell origin of myelodysplastic syndromes. Oncogene. 2014 Oct 30;33(44):5139–5150.
  • Garcia-Manero G. Myelodysplastic syndromes: 2015 Update on diagnosis, risk-stratification and management. Am J Hematol. 2015 Sep;90(9):831–841.
  • Mongiorgi S, Follo MY, Clissa C, et al. Nuclear PI-PLC beta1 and myelodysplastic syndromes: from bench to clinics. Curr Top Microbiol Immunol. 2012;362:235–245.
  • Follo MY, Mongiorgi S, Finelli C, et al. Nuclear PI-PLCbeta1 and myelodysplastic syndromes: genetics and epigenetics. Curr Pharm Des. 2012;18(13):1751–1754.
  • Follo MY, Bosi C, Finelli C, et al. Real-time PCR as a tool for quantitative analysis of PI- PLCbeta1 gene expression in myelodysplastic syndrome. Int J Mol Med. 2006;18(2):267–271.
  • Follo MY, Finelli C, Clissa C, et al. Phosphoinositide-phospholipase C beta1 mono-allelic deletion is associated with myelodysplastic syndromes evolution into acute myeloid leukemia. J Clin Oncol. 2009 Feb 10;27(5):782–790.
  • Follo MY, Finelli C, Mongiorgi S, et al. Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16811–16816.
  • Follo MY, Finelli C, Mongiorgi S, et al. Synergistic induction of PI-PLCbeta1 signaling by azacitidine and valproic acid in high-risk myelodysplastic syndromes. Leukemia. 2011 Feb;25(2):271–280.
  • Cocco L, Finelli C, Mongiorgi S, et al. An increased expression of PI-PLCbeta1 is associated with myeloid differentiation and a longer response to azacitidine in myelodysplastic syndromes. J Leukoc Biol. 2015 Nov 15;98(5):769–780.
  • Fili C, Malagola M, Follo MY, et al. Prospective phase II Study on 5-days azacitidine for treatment of symptomatic and/or erythropoietin unresponsive patients with low/INT-1-risk myelodysplastic syndromes. Clin Cancer Res. 2013 Jun 15;19(12):3297–3308.
  • Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life. 2012 May;64(5):402–410.
  • Schnoder TM, Arreba-Tutusaus P, Griehl I, et al. Epo-induced erythroid maturation is dependent on Plcgamma1 signaling. Cell Death Differ. 2015;22(6):974–985.
  • Follo MY, Finelli C, Bosi C, et al. PI-PLCbeta-1 and activated Akt levels are linked to azacitidine responsiveness in high-risk myelodysplastic syndromes. Leukemia. 2008;22(1):198–200.
  • Nyakern M, Tazzari PL, Finelli C, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia. 2006;20(2):230–238.
  • Follo MY, Mongiorgi S, Bosi C, et al. The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res. 2007 May 1;67(9):4287–4294.
  • Mahajan K, Mahajan NP. PI3K-independent AKT activation in cancers: a treasure trove for novel therapeutics. J Cell Physiol. 2012 Sep;227(9):3178–3184.
  • Walter RB. The role of CD33 as therapeutic target in acute myeloid leukemia. Expert Opin Ther Targets. 2014 Jul;18(7):715–718.
  • Konig H, Levis M. Targeting FLT3 to treat leukemia. Expert Opin Ther Targets. 2015 Jan;19(1):37–54.
  • Bejar R, Steensma DP. Recent developments in myelodysplastic syndromes. Blood. 2014;124(18):2793–2803.
  • De Luca A, Maiello MR, D’Alessio A, et al. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012;16(Suppl 2):S17–S27.
  • Takashima A, Faller DV. Targeting the RAS oncogene. Expert Opin Ther Targets. 2013 May;17(5):507–531.
  • Pettersson F, Del Rincon SV, Miller WH Jr. Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opin Ther Targets. 2014 Sep;18(9):1035–1048.
  • Bruserud O, Reikvam H. Therapeutic targeting of NF-kappaB in myelodysplastic syndromes and acute myeloid leukaemia - the biological heterogeneity. Expert Opin Ther Targets. 2010 Nov;14(11):1139–1142.
  • Breccia M, Alimena G. NF-kappaB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia. Expert Opin Ther Targets. 2010 Nov;14(11):1157–1176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.