655
Views
19
CrossRef citations to date
0
Altmetric
Review

The potential of targeting CYP11B

Pages 923-934 | Received 29 Oct 2015, Accepted 04 Feb 2016, Published online: 02 Mar 2016

References

  • Bernhardt R, Waterman MR. Cytochrome P450 and steroid hormone biosynthesis. In: Sigel A, Sigel H, Sigel RKO, editors. The ubiquitous roles of cytochrome P450 proteins. 3. Chichester, UK: John Wiley & Sons; 2007. p. 361–369.
  • Schiffer L, Anderko S, Hannemann F, et al. The CYP11B subfamily. J Steroid Biochem Mol Biol. 2015;151:38–51.
  • Kawamoto T, Mitsuuchi Y, Ohnishi T, et al. Cloning and expression of a cDNA for human cytochrome P-450aldo as related to primary aldosteronism. Biochem Biophys Res Commun. 1990;173:309–316.
  • Kawamoto T, Mitsuuchi Y, Toda K, et al. Cloning of cDNA and genomic DNA for human cytochrome P-45011 beta. FEBS Lett. 1990;269:345–349.
  • Mornet E, Dupont J, Vitek A, et al. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem. 1989;264:20961–22067.
  • Erdmann B, Denner K, Gerst H, et al. Human adrenal CYP11B1: localization by in situ-hybridization and functional expression in cell cultures. Endocr Res. 1995;21:425–435.
  • Erdmann B, Gerst H, Bulow H, et al. Zone-specific localization of cytochrome P45011B1 in human adrenal tissue by PCR-derived riboprobes. Histochem Cell Biol. 1995;104:301–307.
  • Pascoe L, Jeunemaitre X, Lebrethon MC, et al. Glucocorticoid-suppressible hyperaldosteronism and adrenal tumors occurring in a single French pedigree. J Clin Invest. 1995;96:2236–2246.
  • Bernhardt R. Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev Physiol Biochem Pharmacol. 1996;127:137–221.
  • Hannemann F, Bichet A, Ewen KM, et al. Cytochrome P450 systems–biological variations of electron transport chains. Biochim Biophys Acta. 2007;1770:330–344.
  • MacKenzie SM, Connell JM, Davies E, Non-adrenal synthesis of aldosterone: a reality check. Mol Cell Endocrinol. 2012;350:163–167.
  • White PC, Slutsker L. Haplotype analysis of CYP11B2. Endocr Res. 1995;21:437–442.
  • Ogishima T, Shibata H, Shimada H, et al. Aldosterone synthase cytochrome P-450 expressed in the adrenals of patients with primary aldosteronism. J Biol Chem. 1991;266:10731–10734.
  • Bureik M, Lisurek M, Bernhardt R. The human steroid hydroxylases CYP1B1 and CYP11B2. Biol Chem. 2002;383:1537–1551.
  • Curnow KM, Tusie-Luna MT, Pascoe L, et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol. 1991;5:1513–1522.
  • Denner K, Doehmer J, Bernhardt R. Cloning of CYP11B1 and CYP11B2 from normal human adrenal and their functional expression in COS-7 and V79 Chinese hamster cells. Endocr Res. 1995;21:443–448.
  • Lisurek M, Bernhardt R. Modulation of aldosterone and cortisol synthesis on the molecular level. Mol Cell Endocrinol. 2004;215:149–159.
  • Mulatero P, Curnow KM, Aupetit-Faisant B, et al. Recombinant CYP11B genes encode enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol, and 18-oxocortisol. J Clin Endocrinol Metab. 1998;83:3996–4001.
  • Strushkevich N, Gilep AA, Shen L, et al. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol. 2013;27:315–324.
  • Zollner A, Kagawa N, Waterman MR, et al. Purification and functional characterization of human 11beta hydroxylase expressed in Escherichia coli. FEBS J. 2008;275:799–810. Epub 2008/01/25.
  • Kawamoto T, Mitsuuchi Y, Toda K, et al.. Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci USA. 1992;89:1458–1462.
  • Hobler A, Kagawa N, Hutter MC, et al. Human aldosterone synthase: recombinant expression in E. coli and purification enables a detailed biochemical analysis of the protein on the molecular level. J Steroid Biochem Mol Biol. 2012;132:57–65.
  • Schloms L, Storbeck KH, Swart P, et al. The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells. J Steroid Biochem Mol Biol. 2012;128:128–138.
  • Swart AC, Storbeck K-H. 11β-hydroxyandrostenedione: downstream metabolism by 11βHSD, 17βHSD and SRD5A produces novel substrates in familiar pathways. Mol Cell Endocrinol. 2015;408:114–123.
  • Parr MK, Zollner A, Fussholler G, et al. Unexpected contribution of cytochrome P450 enzymes CYP11B2 and CYP21, as well as CYP3A4 in xenobiotic androgen elimination - insights from metandienone metabolism. Toxicol Lett. 2012;213:381–391.
  • Zollner A, Parr MK, Dragan CA, et al. CYP21-catalyzed production of the long-term urinary metandienone metabolite 17beta-hydroxymethyl-17 alpha-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping. Biol Chem. 2010;391:119–127.
  • Schiffer L, Brixius-Anderko S, Hannemann F, et al. Metabolism of oral-turinabol by human steroid hormone-synthesizing cytochromes P450. Drug Metab Dispos. 2015;44:227–237.
  • Lund BO, Lund J. Novel involvement of a mitochondrial steroid hydroxylase (P450c11) in xenobiotic metabolism. J Biol Chem. 1995;270:20895–20897.
  • Schuster I, Bernhardt R, Inhibition of cytochromes p450: existing and new promising therapeutic targets. Drug Metab Rev. 2007;39:481–499.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–996.
  • Chua SC, Szabo P, Vitek A, et al. Cloning of cDNA encoding steroid 11 beta-hydroxylase (P450c11). Proc Natl Acad Sci U S A. 1987;84:7193–7197.
  • Wagner MJ, Ge Y, Siciliano M, et al. A hybrid cell mapping panel for regional localization of probes to human chromosome 8. Genomics. 1991;10:114–125.
  • Hampf M, Dao NT, Hoan NT, et al. Unequal crossing-over between aldosterone synthase and 11beta-hydroxylase genes causes congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2001;86:4445–4452.
  • Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–265.
  • MacConnachie AA, Kelly KF, McNamara A, et al. Rapid diagnosis and identification of cross-over sites in patients with glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab. 1998;83:4328–4331.
  • Pascoe L, Curnow KM, Slutsker L, et al. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc Natl Acad Sci U S A. 1992;89:8327–8331.
  • Peters J, Hampf M, Peters B, et al.. Handbuch der Molekularen Medizin. In: Ganten D, Ruckpaul K, editors. Molekularbiologie,Klinik und Therapie steroidbedingter Hypertonien. Berlin: Springer Verlag; 1998. p. 413–452.
  • Peter M. Congenital adrenal hyperplasia: 11beta-hydroxylase deficiency. Semin Reprod Med. 2002;20:249–254.
  • White PC. Aldosterone synthase deficiency and related disorders. Mol Cell Endocrinol. 2004;217:81–87.
  • Ferrari P. Genetics of the mineralocorticoid system in primary hypertension. Curr Hypertens Rep. 2002;4:18–24.
  • Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–556.
  • White PC. Steroid 11 beta-hydroxylase deficiency and related disorders. Endocrinol Metab Clin North Am. 2001;30:61–79.
  • Pitt B, Williams G, Remme W, et al. The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study. Cardiovasc Drugs Ther. 2001;15:79–87.
  • Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–717.
  • Williams TA, Mulatero P, Bidlingmaier M, et al. Genetic and potential autoimmune triggers of primary aldosteronism. Hypertension. 2015;66:248–253.
  • Rossi GP, Bernini G, Caliumi C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48:2293–2300.
  • Calhoun DA, Nishizaka MK, Zaman MA, et al. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension. 2002;40:892–896.
  • Gomez-Sanchez CE, Oki K. Minireview: potassium channels and aldosterone dysregulation: is primary aldosteronism a potassium channelopathy? Endocrinology. 2014;155:47–55.
  • Lenzini L, Rossitto G, Maiolino G, et al. A meta-analysis of somatic KCNJ5 K+ channel mutations in 1636 patients with an aldosterone-producing adenoma. J Clin Endocrinol Metabolism. 2015;100:E1089–E95.
  • Fernandes-Rosa FL, Williams TA, Riester A, et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension. 2014;64:354–361.
  • Hakki T, Bernhardt R. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther. 2006;111:27–52.
  • Hargovan M, Ferro A. Aldosterone synthase inhibitors in hypertension: current status and future possibilities. JRSM Cardiovasc Dis. 2014;3:1–9
  • Namsolleck P, Unger T. Aldosterone synthase inhibitors in cardiovascular and renal diseases. Nephrol Dial Transplant. 2014;29:i62–i8.
  • Denner K, Vogel R, Schmalix W, et al. Cloning and stable expression of the human mitochondrial cytochrome P45011B1 cDNA in V79 Chinese hamster cells and their application for testing of potential inhibitors. Pharmacogenetics. 1995;5:89–96.
  • Denner K, Bernhardt R. Inhibition studies of steroid conversions mediated by human CYP11B1and CYP11B2 expressed in cell cultures. In: Ishimura Y, Shimada H, Suematsu M, editors. Oxygen homeostasis and its dynamics. Berlin: Springer-Verlag; 1998. p. 231–236.
  • Ehmer PB, Bureik M, Bernhardt R, et al. Development of a test system for inhibitors of human aldosterone synthase (CYP11B2): screening in fission yeast and evaluation of selectivity in V79 cells. J Steroid Biochem Mol Biol. 2002;81:173–179.
  • Ulmschneider S, Muller-Vieira U, Klein CD, et al. Synthesis and evaluation of (pyridylmethylene)tetrahydronaphthalenes/-indanes and structurally modified derivatives: potent and selective inhibitors of aldosterone synthase. J Med Chem. 2005;48:1563–1575.
  • Ulmschneider S, Muller-Vieira U, Mitrenga M, et al. Synthesis and evaluation of imidazolylmethylenetetrahydronaphthalenes and imidazolylmethyleneindanes: potent inhibitors of aldosterone synthase. J Med Chem. 2005;48:1796–1805.
  • Bureik M, Hubel K, Dragan CA, et al. Development of test systems for the discovery of selective human aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1) inhibitors. Discovery of a new lead compound for the therapy of congestive heart failure, myocardial fibrosis and hypertension. Mol Cell Endocrinol. 2004;217:249–254.
  • Voets M, Antes I, Scherer C, et al. Synthesis and evaluation of heteroaryl-substituted dihydronaphthalenes and indenes: potent and selective inhibitors of aldosterone synthase (CYP11B2) for the treatment of congestive heart failure and myocardial fibrosis. J Med Chem. 2006;49:2222–2231.
  • Roumen L, Sanders MP, Pieterse K, et al. Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics. J Comput Aided Mol Des. 2007;21:455–471.
  • Roumen L, Peeters JW, Emmen JM, et al. Synthesis, biological evaluation, and molecular modeling of 1-benzyl-1H-imidazoles as selective inhibitors of aldosterone synthase (CYP11B2). J Med Chem. 2010;53:1712–1725.
  • Hoyt SB, Park MK, London C, et al. Discovery of Benzimidazole CYP11B2 Inhibitors with in Vivo Activity in Rhesus Monkeys. ACS Med Chem Lett. 2015;6:573–578.
  • Hu Q, Yin L, Ali A, et al. Novel pyridyl substituted 4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines as potent and selective aldosterone synthase inhibitors with improved in vitro metabolic stability. J Med Chem. 2015;58:2530–2537.
  • Freel EM, Shakerdi LA, Friel EC, et al. Studies on the origin of circulating 18-hydroxycortisol and 18-oxocortisol in normal human subjects. J Clin Endocrinol Metab. 2004;89:4628–4633.
  • LaSala D, Shibanaka Y, Jeng AY. Coexpression of CYP11B2 or CYP11B1 with adrenodoxin and adrenodoxin reductase for assessing the potency and selectivity of aldosterone synthase inhibitors. Anal Biochem. 2009;394:56–61.
  • Muller-Vieira U, Angotti M, Hartmann RW. The adrenocortical tumor cell line NCI-H295R as an in vitro screening system for the evaluation of CYP11B2 (aldosterone synthase) and CYP11B1 (steroid-11beta-hydroxylase) inhibitors. J Steroid Biochem Mol Biol. 2005;96:259–270.
  • Cerny MA, Csengery A, Schmenk J, et al. Development of CYP11B1 and CYP11B2 assays utilizing homogenates of adrenal glands: utility of monkey as a surrogate for human. J Steroid Biochem Mol Biol. 2015;154:197–205.
  • Yurek D, Yu L, Schrementi J, et al. Development of a high-throughput assay for aldosterone synthase inhibitors using high-performance liquid chromatography-tandem mass spectrometry. Anal Biochem. 2014;462:44–50.
  • Bureik M, Schiffler B, Hiraoka Y, et al. Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry. 2002;41:2311–2321.
  • Dragan CA, Zearo S, Hannemann F, et al. Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. FEMS Yeast Res. 2005;5:621–625.
  • Schiffler B, Bureik M, Reinle W, et al. The adrenodoxin-like ferredoxin of Schizosaccharomyces pombe mitochondria. J Inorg Biochem. 2004;98:1229–1237.
  • Ewen KM, Schiffler B, Uhlmann-Schiffler H, et al. The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe. FEMS Yeast Res. 2008;8:432–441.
  • Hakki T, Zearo S, Dragan CA, et al. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol. 2008;133:351–359. Epub 2007 Oct 16.
  • Hakki T, Hubel K, Waldmann H, et al. The development of a whole-cell based medium throughput screening system for the discovery of human aldosterone synthase (CYP11B2) inhibitors: old drugs disclose new applications for the therapy of congestive heart failure, myocardial fibrosis and hypertension. J Steroid Biochem Mol Biol. 2011;125:120–128.
  • Schiffer L, Anderko S, Hobler A, et al. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb Cell Fact. 2015;14:25.
  • Belkina NV, Lisurek M, Ivanov AS, et al. Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2. J Inorg Biochem. 2001;87:197–207.
  • Ulmschneider S, Negri M, Voets M, et al. Development and evaluation of a pharmacophore model for inhibitors of aldosterone synthase (CYP11B2). Bioorg Med Chem Lett. 2006;16:25–30.
  • Böttner B, Schrauber H, Bernhardt R. Engineering a Mineralocorticoid- to a Glucocorticoid-synthesizing Cytochrome P450. J Biol Chem. 1996;271:8028–8033.
  • Hartmann RW, Muller U, Ehmer PB. Discovery of selective CYP11B2 (aldosterone synthase) inhibitors for the therapy of congestive heart failure and myocardial fibrosis. Eur J Med Chem. 2003;38:363–366.
  • Menard J, Pascoe L. Can the dextroenantiomer of the aromatase inhibitor fadrozole be useful for clinical investigation of aldosterone-synthase inhibition? J Hypertens. 2006;24:993–997.
  • Fiebeler A, Nussberger J, Shagdarsuren E, et al. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation. 2005;111:3087–3094.
  • Lea WB, Kwak ES, Luther JM, et al. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 2009;75:936–944.
  • Minnaard-Huiban M, Emmen JM, Roumen L, et al. Fadrozole reverses cardiac fibrosis in spontaneously hypertensive heart failure rats: discordant enantioselectivity versus reduction of plasma aldosterone. Endocrinology. 2008;149:28–31.
  • Rigel DF, Fu F, Beil M, et al. Pharmacodynamic and pharmacokinetic characterization of the aldosterone synthase inhibitor FAD286 in two rodent models of hyperaldosteronism: comparison with the 11beta-hydroxylase inhibitor metyrapone. J Pharmacol Exp Ther. 2010;334:232–23.
  • Hille UE, Zimmer C, Vock CA, et al. First selective CYP11B1 inhibitors for the treatment of cortisol-dependent diseases. ACS Med Chem Lett. 2010;2:2–6.
  • Yin L, Lucas S, Maurer F, et al. Novel imidazol-1-ylmethyl substituted 1,2,5,6-tetrahydropyrrolo[3,2,1-ij]quinolin-4-ones as potent and selective CYP11B1 inhibitors for the treatment of Cushing’s syndrome. J Med Chem. 2012;55:6629–6633.
  • Menard J, Rigel DF, Watson C, et al. Aldosterone synthase inhibition: cardiorenal protection in animal disease models and translation of hormonal effects to human subjects. J Transl Med. 2014;12: 340.
  • Schumacher CD, Steele RE, Brunner HR, Aldosterone synthase inhibition for the treatment of hypertension and the derived mechanistic requirements for a new therapeutic strategy. J Hypertens. 2013;31:2085–2093.
  • Hoyt SB, Petrilli W, London C, et al. Discovery of Triazole CYP11B2 Inhibitors with in Vivo Activity in Rhesus Monkeys. ACS Med Chem Lett. 2015;6:861–865.
  • Martin RE, Aebi JD, Hornsperger B, et al. Discovery of 4-Aryl-5,6,7,8-tetrahydroisoquinolines as potent, selective, and orally active aldosterone synthase (CYP11B2) inhibitors: in vivo evaluation in rodents and Cynomolgus Monkeys. J Med Chem. 2015;2:8054–8065.
  • Azizi M, Amar L, Menard J. Aldosterone synthase inhibition in humans. Nephrol Dial Transplant. 2013;28:36–43.
  • Menard J, Watson C, Rebello S, et al. Hormonal and electrolyte response to the aldosterone synthase inhibitor LCI699 in sodium depleted healthy subjects. J Am Coll Cardiol. 2010;55:A61.E583.
  • Amar L, Azizi M, Menard J, et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010;56:831–838.
  • Papillon JP, Adams CM, Hu QY, et al. Structure-activity relationships, pharmacokinetics, and in vivo activity of CYP11B2 and CYP11B1 inhibitors. J Med Chem. 2015;58:4749–4770.
  • Lucas S, Heim R, Ries C, et al. In vivo active aldosterone synthase inhibitors with improved selectivity: lead optimization providing a series of pyridine substituted 3,4-dihydro-1H-quinolin-2-one derivatives. J Med Chem. 2008;51:8077–8087.
  • Sonino N, Boscaro M. Medical therapy for Cushing’s disease. Endocrinol Metab Clin North Am. 1999;28:211–222.
  • Cai W, Counsell RE, Schteingart DE, et al. Adrenal proteins bound by a reactive intermediate of mitotane. Cancer Chemother Pharmacol. 1997;39:537–540.
  • Bertagna X, Pivonello R, Fleseriu M, et al. LCI699, a potent 11beta-hydroxylase inhibitor, normalizes urinary cortisol in patients with Cushing’s disease: results from a multicenter, proof-of-concept study. J Clin Endocrinol Metab. 2014;99:1375–1383.
  • Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28:38–42.
  • Yoetz-Kopelman T, Porat-Ophir C, Shacham-Diamand Y, et al. Whole-cell amperometric biosensor for screening of cytochrome P450 inhibitors. Sensor Actuat B Chem. 2016;223:392–399.
  • Delorme C, Piffeteau A, Viger A, et al. Inhibition of bovine cytochrome P-450(11 beta) by 18-unsaturated progesterone derivatives. Eur J Biochem. 1995;232:247–256.
  • Melby JC, Azar ST, Delaney M, et al. 19-Nor-corticosteroids in genetic hypertension. Effects of inhibitors of 11beta,18,19-hydroxylase activity. J Steroid Biochem Mol Biol. 1993;45:13–18.
  • Azar ST, Melby JC, Griffing GT, et al. Antihypertensive effect of 19-acetylenic-deoxycorticosterone in inbred salt-sensitive rats. Am J Hypertens. 1992;5:372–377.
  • Adam O, Zimmer C, Hanke N, et al. Inhibition of aldosterone synthase (CYP11B2) by torasemide prevents atrial fibrosis and atrial fibrillation in mice. J Mol Cell Cardiol. 2015;85:140–150.
  • Robertson S, MacKenzie SM, Alvarez-Madrazo S, et al. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension. 2013;62:572–578.
  • Hwang KH, Carapito C, Bohmer S, et al. Proteome analysis of Schizosaccharomyces pombe by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2006;6:4115–4129.
  • Bohmer S, Carapito C, Wilzewski B, et al. Analysis of aldosterone-induced differential receptor-independent protein patterns using 2D-electrophoresis and mass spectrometry. Biol Chem. 2006;387:917–929.
  • Zollner S, Hwang KH, Wilzewski B, et al. Aldosterone: from biosynthesis to non-genomic action onto the proteome. Steroids. 2008;73:966–972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.