667
Views
28
CrossRef citations to date
0
Altmetric
Review

Novel ion channel targets in atrial fibrillation

, , , &
Pages 947-958 | Received 16 Jan 2016, Accepted 24 Feb 2016, Published online: 17 Mar 2016

References

  • Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415:219–226.
  • Nattel S, Shiroshita-Takeshita A, Brundel BJ, et al. Mechanisms of atrial fibrillation: lessons from animal models. Prog Cardiovasc Dis. 2005;48:9–28.
  • Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther. 2011;131:221–241.
  • Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Europace. 2010;12:1360–1420.
  • Ferrari R, Bertini M, Blomstrom-Lundqvist C, et al. An update on atrial fibrillation in 2014: from pathophysiology to treatment. Int J Cardiol. 2015;203:22–29.
  • Allessie MA. Atrial electrophysiologic remodeling: another vicious circle? J Cardiovasc Electrophysiol. 1998;9:1378–1393.
  • Jalife J, Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2015;25:475–484.
  • Heijman J, Voigt N, Nattel S, et al. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114:1483–1499.
  • Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation. 2005;112:789–797.
  • Mansour M, Mandapati R, Berenfeld O, et al. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation. 2001;103:2631–2636.
  • Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–666.
  • Chen SA, Hsieh MH, Tai CT, et al. Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation. 1999;100:1879–1886.
  • Jarman JW, Wong T, Kojodjojo P, et al. Spatiotemporal behavior of high dominant frequency during paroxysmal and persistent atrial fibrillation in the human left atrium. Circ Arrhythm Electrophysiol. 2012;5:650–658.
  • Singla S, Karam P, Deshmukh AJ, et al. Review of contemporary antiarrhythmic drug therapy for maintenance of sinus rhythm in atrial fibrillation. J Cardiovasc Pharmacol Ther. 2012;17:12–20.
  • Guillem MS, Climent AM, Rodrigo M, et al. Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovasc Res. 2016;109(4):480–492. doi:10.1093/cvr/cvw011
  • Narayan SM, Krummen DE, Shivkumar K, et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol. 2012;60:628–636.
  • Krummen DE, Swarup V, Narayan SM. The role of rotors in atrial fibrillation. J Thorac Dis. 2015;7:142–151.
  • Echt DS, Liebson PR, Mitchell LB; CAST investigators. Mortality and morbidity in patients receiving encainide, flecainide or placebo: the cardiac arrhythmia suppression trial. N E J M. 1991;324:781–788.
  • Nattel S. Class III drugs: amiodarone, bretylium, ibutilide and sotalol. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology; from cell to bedside. Philadelphia (PA): WB Saunders; 1999. p. 921–932.
  • Hondeghem LM, Snyders DJ. Class III antiarrhythmic agents have a lot of potential but a long way to go. Circulation. 1990;81:686–690.
  • Elming H, Brendorp B, Pehrson S, et al.A benefit-risk assessment of class III antiarrhythmic agents. Expert Opin Drug Saf. 2004;3:559–577.
  • Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. HEART. 2003;1363–1372.
  • Doggrell SA. Amiodarone - waxed and waned and waxed again. Exp Opin Pharmacother. 2001;2:1–14.
  • Doggrell SA, Hancox JC. Dronedarone: an amiodarone analogue. Exp Opin Invest Drugs. 2004;13:415–426.
  • Piccini JP, Hasselblad V, Peterson ED, et al. Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation. J Am Coll Cardiol. 2009;54:1089–1095.
  • Schweizer PA, Becker R, Katus HA, et al. Dronedarone: current evidence for its safety and efficacy in the management of atrial fibrillation. Drug Des Devel Ther. 2011;5:27–39.
  • De Ferrari GM, Dusi V. Drug safety evaluation of dronedarone in atrial fibrillation. Expert Opin Drug Saf. 2012;11:1023–1045.
  • Jahn S, Zollner G, Lackner C, et al. Severe toxic hepatitis associated with dronedarone. Curr Drug Saf. 2013;8:201–202.
  • Milnes JT, Madge DJ, Ford JW. New pharmacological approaches to atrial fibrillation. Drug Discov Today. 2012;17:654–659.
  • Ravens U, Poulet C, Wettwer E, et al. Atrial selectivity of antiarrhythmic drugs. J Physiol. 2013;591:4087–4097.
  • Wettwer E, Christ T, Dobrev D, et al. Novel anti-arrhythmic agents for the treatment of atrial fibrillation. Curr Opin Pharmacol. 2007;7:214–218.
  • Ford JW, Milnes JT. New drugs targeting the cardiac ultra-rapid delayed-rectifier current (I Kur): rationale, pharmacology and evidence for potential therapeutic value. J Cardiovas Pharmacol. 2008;52:105–120.
  • Carmeliet E, Vereecke J. Cardiac cellular electrophysiology. Boston/Dordrecht/London: Kluwer Academic Publishers; 2002.
  • Aguilar M, Qi XY, Huang H, et al. Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation. Biophys J. 2014;107:2444–2455.
  • Hancox JC, Patel KCR, Jones JV. Antiarrhythmics - from cell to clinic: past, present and future. Heart. 2000;84:14–24.
  • Naccarelli GV, Dorian P, Hohnloser SH, et al. Prospective comparison of flecainide versus quinidine for the treatment of paroxysmal atrial fibrillation/flutter. The Flecainide Multicenter Atrial Fibrillation Study Group. Am J Cardiol. 1996;77:53A–59A.
  • Borgeat A, Goy JJ, Maendly R, et al. Flecainide versus quinidine for conversion of atrial fibrillation to sinus rhythm. Am J Cardiol. 1986;58:496–498.
  • Lafuente-Lafuente C, Valembois L, Bergmann JF, et al. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev. 2015;3:CD005049.
  • Alboni P, Botto GL, Baldi N, et al. Outpatient treatment of recent-onset atrial fibrillation with the “pill-in-the-pocket” approach. N Engl J Med. 2004;351:2384–2391.
  • Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am J Cardiol. 2005;84:20R–28R.
  • Patel C, Yan GX, Kowey PR. Dronedarone. Circulation. 2009;120:636–644.
  • Fedida D. Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Exp Opin Investig Drugs. 2007;16:519–532.
  • Burashnikov A, Di Diego JM, Zygmunt AC, et al. Atrial-selective sodium channel block as a strategy for suppression of atrial fibrillation. Ann N Y Acad Sci. 2008;1123:105–112.
  • Li GR, Baumgarten CM. Na+ current heterogeneity in cardiac myocytes from rabbit atrium, ventricle, and Purkinje fibers. Biophys J. 2001;80:635A–35A.
  • Li GR, Lau CP, Shrier A. Heterogeneity of sodium current in atrial vs epicardial ventricular myocytes of adult guinea pig hearts. J Mol Cell Cardiol. 2002;34:1185–1194.
  • Burashnikov A, Di Diego JM, Zygmunt AC, et al. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation. 2007;116:1449–1457.
  • Chen KH, Xu XH, Sun HY, et al. Distinctive property and pharmacology of voltage-gated sodium current in rat atrial vs ventricular myocytes. Heart Rhythm. 2015;S1547-5271(15)01429-0. doi:10.1016/j.hrthm.2015.11.022.
  • Catterall WA. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol. 2012;590:2577–2589.
  • Savio-Galimberti E, Gollob MH, Darbar D. Voltage-gated sodium channels: biophysics, pharmacology, and related channelopathies. Front Pharmacol. 2012;3:124.
  • Sakakibara Y, Wasserstrom JA, Furukawa T, et al. Characterization of the sodium current in single human atrial myocytes. Circ Res. 1992;71:535–546.
  • Sakakibara Y, Furukawa T, Singer DH, et al. Wasserstrom JA: Sodium current in isolated human ventricular myocytes. Am J Physiol. 1993;265:H1301–H1309.
  • Furukawa T, Koumi S, Sakakibara Y, et al. An analysis of lidocaine block of sodium current in isolated human atrial and ventricular myocytes. J Mol Cell Cardiol. 1995;27:831–846.
  • Aguilar-Shardonofsky M, Vigmond EJ, Nattel S, et al. In silico optimization of atrial fibrillation-selective sodium channel blocker pharmacodynamics. Biophys J. 2012;102:951–960.
  • Hille B. Local anaesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977;69:497–515.
  • Hondeghem LM, Katzung BG. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423.
  • Starmer CF, Grant AO, Strauss HC. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J. 1984;46:15–27.
  • Murdock DK, Kersten M, Kaliebe J, et al. The use of oral ranolazine to convert new or paroxysmal atrial fibrillation: a review of experience with implications for possible “pill in the pocket” approach to atrial fibrillation. Indian Pacing Electrophysiol J. 2009;9:260–267.
  • Murdock DK, Kaliebe J, Larrain G. The use of ranolazine to facilitate electrical cardioversion in cardioversion-resistant patients: a case series. Pacing Clin Electrophysiol. 2012;35:302–307.
  • Scirica BM, Morrow DA, Hod H, et al. Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the metabolic efficiency with ranolazine for less ischemia in non ST-elevation acute coronary syndrome thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation. 2007;116:1647–1652.
  • Szel T, Koncz I, Jost N, et al. Class I/B antiarrhythmic property of ranolazine, a novel antianginal agent, in dog and human cardiac preparations. Eur J Pharmacol. 2011;662:31–39.
  • Zygmunt AC, Nesterenko VV, Rajamani S, et al. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block. Am J Physiol Heart Circ Physiol. 2011;301:H1606–H1614.
  • Burashnikov A, Belardinelli L, Antzelevitch C. Atrial-selective sodium channel block strategy to suppress atrial fibrillation: ranolazine versus propafenone. J Pharmacol Exp Ther. 2012;340:161–168.
  • Schram G, Zhang L, Derakhchan K, et al. Ranolazine: ion-channel-blocking actions and in vivo electrophysiological effects. Br J Pharmacol. 2004;142:1300–1308.
  • Rajamani S, El-Bizri N, Shryock JC, et al. Use-dependent block of cardiac late Na(+) current by ranolazine. Heart Rhythm. 2009;6:1625–1631.
  • Hancox JC, Doggrell SA. Perspective: does ranolazine have potential for the treatment of atrial fibrillation? Expert Opin Investig Drugs. 2010;19:1465–1474.
  • Poulet C, Wettwer E, Grunnet M, et al. Late sodium current in human atrial cardiomyocytes from patients in sinus rhythm and atrial fibrillation. PLoS One. 2015;10:e0131432.
  • Burashnikov A, Petroski A, Hu D, et al. Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation. Heart Rhythm. 2012;9:125–131.
  • Hu D, Barajas-Martinez H, Burashnikov A, et al. Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. Int J Cardiol. 2016;207:326–334.
  • Chen Y, Nie S, Gao H, et al. The effects of wenxin keli on p-wave dispersion and maintenance of sinus rhythm in patients with paroxysmal atrial fibrillation: a meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2013;2013:245958.
  • Meng Z, Tan J, He Q, et al. Wenxin Keli versus sotalol for paroxysmal atrial fibrillation caused by hyperthyroidism: a prospective, open label, and randomized study. Evid Based Complement Alternat Med. 2015;2015:101904.
  • Suzuki T, Morishima M, Kato S, et al. Atrial selectivity in Na+ channel blockade by acute amiodarone. Cardiovasc Res. 2013;98:136–144.
  • Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet. 2010;375:1212–1223.
  • Antzelevitch C, Belardinelli L, Wu L, et al. Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent. J Cardiovasc Pharmacol Ther. 2004;9(Suppl 1):S65–S83.
  • Kumar K, Nearing BD, Carvas M, et al. Ranolazine exerts potent effects on atrial electrical properties and abbreviates atrial fibrillation duration in the intact porcine heart. J Cardiovasc Electrophysiol. 2009;20:796–802.
  • Burashnikov A, Belardinelli L, Antzelevitch C. Inhibition of IKr potentiates development of atrial-selective INa block leading to effective suppression of atrial fibrillation. Heart Rhythm. 2015;12:836–844.
  • Sicouri S, Burashnikov A, Belardinelli L, et al. Synergistic electrophysiologic and antiarrhythmic effects of the combination of ranolazine and chronic amiodarone in canine atria. Circ Arrhythm Electrophysiol. 2010;3:88–95.
  • Frommeyer G, Kaiser D, Uphaus T, et al. Effect of ranolazine on ventricular repolarization in class III antiarrhythmic drug-treated rabbits. Heart Rhythm. 2012;9:2051–2058.
  • Frommeyer G, Milberg P, Uphaus T, et al. Antiarrhythmic effect of ranolazine in combination with class III drugs in an experimental whole-heart model of atrial fibrillation. Cardiovasc Ther. 2013;31:e63–e71.
  • Simopoulos V, Tagarakis GI, Daskalopoulou SS, et al. Ranolazine enhances the antiarrhythmic activity of amiodarone by accelerating conversion of new-onset atrial fibrillation after cardiac surgery. Angiology. 2014;65(4):294–297.
  • Reiffel JA, Camm AJ, Belardinelli L, et al. The HARMONY trial: combined ranolazine and dronedarone in the management of paroxysmal atrial fibrillation: mechanistic and therapeutic synergism. Circ Arrhythm Electrophysiol. 2015;8:1048–1056.
  • Kohler M, Hirschberg B, Bond CT, et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 1996;273:1709–1714.
  • Weatherall KL, Goodchild SJ, Jane DE, et al. Small conductance calcium-activated potassium channels: from structure to function. Prog Neurobiol. 2010;91:242–255.
  • Xu Y, Tuteja D, Zhang Z, et al. Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J Biol Chem. 2003;278:49085–49094.
  • Hancock JM, Weatherall KL, Choisy SC, et al. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes. Heart Rhythm. 2015;12:1003–1015.
  • Giles WR, Imaizumi Y. Comparison of potassium current in rabbit atrial and ventricular cells. J Physiol. 1988;405:123–145.
  • Tuteja D, Xu D, Timofeyev V, et al. Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol. 2005;289:H2714–H2723.
  • Li N, Timofeyev V, Tuteja D, et al. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol. 2009;587:1087–1100.
  • Tuteja D, Rafizadeh S, Timofeyev V, et al. Cardiac small conductance Ca2+-activated K+ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res. 2010;107:851–859.
  • Zhang XD, Timofeyev V, Li N, et al. Critical roles of a small conductance Ca2+-activated K+ channel (SK3) in the repolarization process of atrial myocytes. Cardiovasc Res. 2014;101:317–325.
  • Yu T, Wu RB, Guo HM, et al. Expression and functional role of small conductance Ca2+-activated K+ channels in human atrial myocytes. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:490–494.
  • Nagy N, Szuts V, Horvath Z, et al. Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol. 2009;47:656–663.
  • Mu YH, Zhao WC, Duan P, et al. RyR2 modulates a Ca2+-activated K+ current in mouse cardiac myocytes. PLoS One. 2014;9:e94905.
  • Diness JG, Sorensen US, Nissen JD, et al. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:380–390.
  • Skibsbye L, Diness JG, Sorensen US, et al. The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca2+-activated K+ channels. J Cardiovasc Pharmacol. 2011;57:672–681.
  • Haugaard MM, Hesselkilde EZ, Pehrson S, et al. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm. 2015;12:825–835.
  • Sosunov EA, Anyukhovsky EP, Hefer D, et al. Region-specific, pacing-induced changes in repolarization in rabbit atrium: an example of sensitivity to the rare. Cardiovasc Res. 2005;67:274–282.
  • Ozgen N, Dun W, Sosunov EA, et al. Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc Res. 2007;75:758–769.
  • Diness JG, Skibsbye L, Jespersen T, et al. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition. Hypertension. 2011;57:1129–1135.
  • Qi XY, Diness JG, Brundel BJ, et al. Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog. Circulation. 2014;129:430–440.
  • Li M-L, Li T, Lei M, et al. Increased small conductance calcium-activated potassium channel (SK2 channel) current in atrial myocytes of patients with persistent atrial fibrillation. Zhonghua Xin Xue Guan Bing Za Zhi. 2011;39:147–151.
  • Yi F, Ling TY, Lu T, et al. Down-regulation of the small conductance calcium-activated potassium channels in diabetic mouse atria. J Biol Chem. 2015;290:7016–7026.
  • Yu T, Deng C, Wu R, et al. Decreased expression of small-conductance Ca2+-activated K+ channels SK1 and SK2 in human chronic atrial fibrillation. Life Sci. 2012;90:219–227.
  • Skibsbye L, Poulet C, Diness JG, et al. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc Res. 2014;103:156–167.
  • Hsueh CH, Chang PC, Hsieh YC, et al. Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium. Heart Rhythm. 2013;10:891–898.
  • Aslanidi OV, Hancox JC. Letter to the Editor—Initiation and sustenance of reentry are promoted by two different mechanisms. Heart Rhythm. 2015;12:e2.
  • Colman MA, Varela M, Hancox JC, et al. Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model. Europace. 2014;16:416–423.
  • Chen WT, Chen YC, Lu YY, et al. Apamin modulates electrophysiological characteristics of the pulmonary vein and the Sinoatrial Node. Eur J Clin Invest. 2013;43:957–963.
  • Goldstein SA, Bockenhauer D, O’Kelly I, et al. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci. 2001;2:175–184.
  • Decher N, Kiper AK, Rolfes C, et al. The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch. 2015;467:1055–1067.
  • Schmidt C, Wiedmann F, Voigt N, et al. Upregulation of K(2P)3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation. 2015;132:82–92.
  • Limberg SH, Netter MF, Rolfes C, et al. TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes. Cell Physiol Biochem. 2011;28:613–624.
  • Ellinghaus P, Scheubel RJ, Dobrev D, et al. Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. J Thorac Cardiovasc Surg. 2005;129:1383–1390.
  • Donner BC, Schullenberg M, Geduldig N, et al. Functional role of TASK-1 in the heart: studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability. Basic Res Cardiol. 2011;106:75–87.
  • Shinagawa K, Li D, Leung TK, et al. Consequences of atrial tachycardia-induced remodeling depend on the preexisting atrial substrate. Circulation. 2002;105:251–257.
  • Cha T-J, Ehrlich JR, Zhang L, et al. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation. 2004;110:1520–1526.
  • Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91:265–325.
  • Soucek R, Thomas D, Kelemen K, et al. Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm. 2012;9:265–272.
  • Trappe K, Thomas D, Bikou O, et al. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. Eur Heart J. 2013;34:147–157.
  • Schmidt C, Wiedmann F, Langer C, et al. Cloning, functional characterization, and remodeling of K2P3.1 (TASK-1) potassium channels in a porcine model of atrial fibrillation and heart failure. Heart Rhythm. 2014;11:1798–1805.
  • Qi X-Y, Huang H, Ordog B, et al. Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling. Circ Res. 2015;116:836–845.
  • Liang B, Soka M, Christensen AH, et al. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J Mol Cell Cardiol. 2014;67:69–76.
  • Harleton E, Besana A, Comas GM, et al. Ability to induce atrial fibrillation in the peri-operative period is associated with phosphorylation-dependent inhibition of TWIK protein-related acid-sensitive potassium channel 1 (TASK-1). J Biol Chem. 2013;288:2829–2838.
  • Harleton E, Besana A, Chandra P, et al. TASK-1 current is inhibited by phosphorylation during human and canine chronic atrial fibrillation. Am J Physiol Heart Circ Physiol. 2015;308:H126–H134.
  • Rajan S, Plant LD, Rabin ML, et al. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell. 2005;121:37–47.
  • Feliciangeli S, Bendahhou S, Sandoz G, et al. Does sumoylation control K2P1/TWIK1 background K+ channels? Cell. 2007;130:563–569.
  • Ma L, Zhang X, Chen H. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. Sci Signal. 2011;4:ra37.
  • Chatelain FC, Bichet D, Douguet D, et al. TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci U S A. 2012;109:5499–5504.
  • Thomas D, Plant LD, Wilkens CM, et al. Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron. 2008;58:859–870.
  • Chen H, Chatelain FC, Lesage F. Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci. 2014;35:461–469.
  • Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605.
  • Kisselbach J, Seyler C, Schweizer PA, et al. Modulation of K2P 2.1 and K2P 10.1 K+ channel sensitivity to carvedilol by alternative mRNA translation initiation. Br J Pharmacol. 2014;171:5182–5194.
  • Schmidt C, Wiedmann F, Tristram F, et al. Cardiac expression and atrial fibrillation-associated remodeling of K(2)p2.1 (TREK-1) K+ channels in a porcine model. Life Sci. 2014;97:107–115.
  • Decher N, Maier M, Dittrich W, et al. Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett. 2001;492:84–89.
  • Girard C, Duprat F, Terrenoire C, et al. Genomic and functional characteristics of novel human pancreatic 2P domain K channels. Biochem Biophys Res Commun. 2001;282:249–256.
  • Domingues-Montanari S, Fernandez-Cadenas I, Del Rio-Espinola A, et al. KCNK17 genetic variants in ischemic stroke. Atherosclerosis. 2010;208:203–209.
  • Ma Q, Wang Y, Shen Y, et al. The rs10947803 SNP of KCNK17 is associated with cerebral hemorrhage but not ischemic stroke in a Chinese population. Neurosci Lett. 2013;539:82–85.
  • Leonoudakis D, Gray AT, Winegar BD, et al. An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci. 1998;18:868–877.
  • Kindler CH, Yost CS, Gray AT. Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology. 1999;90:1092–1102.
  • Gierten J, Ficker E, Bloehs R, et al. The human cardiac K2P3.1 (TASK-1) potassium leak channel is a molecular target for the class III antiarrhythmic drug amiodarone. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:261–270.
  • Staudacher K, Staudacher I, Ficker E, et al. Carvedilol targets human K2P 3.1 (TASK1) K+ leak channels. Br J Pharmacol. 2011;163:1099–1110.
  • Schmidt C, Wiedmann F, Schweizer PA, et al. Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 (2)p) channels. Eur J Pharmacol. 2013;721:237–248.
  • Schmidt C, Wiedmann F, Schweizer PA, et al. Novel electrophysiological properties of dronedarone: inhibition of human cardiac two-pore-domain potassium (K2P) channels. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1003–1016.
  • Schmidt C, Wiedmann F, Schweizer PA, et al. Inhibition of cardiac two-pore-domain K+ (K2P) channels–an emerging antiarrhythmic concept. Eur J Pharmacol. 2014;738:250–255.
  • Barbuti A, Ishii S, Shimizu T, et al. Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Am J Physiol Heart Circ Physiol. 2002;282:H2024–H2030.
  • Putzke C, Wemhoner K, Sachse FB, et al. The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res. 2007;75:59–68.
  • Decher N, Wemhöner K, Rinné S, et al. Knock-out of the potassium channel TASK-1 leads to a prolonged QT interval and a disturbed QRS complex. Cell Physiol Biochem. 2011;28:77–86.
  • Rinné S, Kiper AK, Schlichthörl G, et al. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J Mol Cell Cardiol. 2015;81:71–80.
  • Church TW, Weatherall KL, Correa SA, et al. Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Eur J Neurosci. 2015;41:305–315.
  • Ellinor PT, Lunetta KL, Glazer NL, et al. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–244.
  • Chang SH, Chang SN, Hwang JJ, et al. Significant association of rs13376333 in KCNN3 on chromosome 1q21 with atrial fibrillation in a Taiwanese population. Circ J. 2012;76:184–188.
  • Yao JL, Zhou YF, Yang XJ, et al. KCNN3 SNP rs13376333 on chromosome 1q21 confers increased risk of atrial fibrillation. Int Heart J. 2015;56:511–515.
  • Lu L, Zhang Q, Timofeyev V, et al. Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ Res. 2007;100:112–120.
  • Rafizadeh S, Zhang Z, Woltz RL, et al. Functional interaction with filamin A and intracellular Ca2+ enhance the surface membrane expression of a small-conductance Ca2+-activated K+ (SK2) channel. Proc Natl Acad Sci U S A. 2014;111:9989–9994.
  • Ling TY, Wang XL, Chai Q, et al. Regulation of the SK3 channel by microRNA-499–potential role in atrial fibrillation. Heart Rhythm. 2013;10:1001–1009.
  • Chang PC, Chen PS. SK channels and ventricular arrhythmias in heart failure. Trends Cardiovasc Med. 2015;25:508–514.
  • Kiper AK, Rinne S, Rolfes C, et al. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea? Pflugers Arch. 2015;467:1081–1090.
  • Seyler C, Li J, Schweizer PA, et al. Inhibition of cardiac two-pore-domain K+ (K2P) channels by the antiarrhythmic drug vernakalant–comparison with flecainide. Eur J Pharmacol. 2014;724:51–57.
  • Seyler C, Schweizer PA, Zitron E, et al. Vernakalant activates human cardiac K(2P)17.1 background K+ channels. Biochem Biophys Res Commun. 2014;451:415–420.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.