304
Views
10
CrossRef citations to date
0
Altmetric
Review

MiRNA 34a: a therapeutic target for castration-resistant prostate cancer

, , &
Pages 1075-1085 | Received 13 Nov 2015, Accepted 02 Mar 2016, Published online: 28 Mar 2016

References

  • Prostate cancer [Internet]. Cancer research uk. p. 1–4. [cited 2015 Oct 31]. Available from: http://www.cancerresearchuk.org/
  • Yip K, McConnell H, Alonzi R, et al. Using routinely collected data to stratify prostate cancer patients into phases of care in the United Kingdom: implications for resource allocation and the cancer survivorship programme. Br J Cancer. Nature Publishing Group. 2015;112(9):1594–1602.
  • Wilson KM, Giovannucci EL, Mucci LA. Lifestyle and dietary factors in the prevention of lethal prostate cancer. Asian J Androl. 2012;14(3):365–374.
  • Hammerich KH, Ayala GE, Wheeler TM. Anatomy of the prostate gland and surgical pathology of prostate cancer. Cambridge: Cambridge University; 2009. p. 1–10.
  • Ingle SP, Ramona I, Sukesh. The efficiency of the serum prostate specific antigen levels in diagnosing prostatic enlargements. J Clin Diagnostic Res. 2013;7(1):82–84.
  • Philippou Y, Raja H, Gnanapragasam VJ. Active surveillance of prostate cancer: a questionnaire survey of urologists, clinical oncologists and urology nurse specialists across three cancer networks in the United Kingdom. BMC Urol. 2015;15(1):52.
  • Antonarakis ES, Carducci MA, Eisenberger MA. Novel targeterd therpeutics for metastatic castration-resistat prostate cancer. Cancer Lett. 2010;291(1):1–13.
  • Masood AK, Partin AW. Bisphosphonate in metastatic prostate cancer. Rev Urol. 2003;5(3):204–206.
  • Hotte SJ, Saad F. Current management of hormone-refractory prostate cancer. Clin Adv Hematol Oncol. 2010;17(Suppl 2):S72–79.
  • Msaouel P, Pissimissis N, Halapas A, et al. Mechanism of bone metastases in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab. 2008;22(2):341–355.
  • Ibrahim T, Flamini E, Mercatali L, et al. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010;116:1406–1418.
  • Abrahamsson P-A. Pathophysiology of bone metastases in prostate cancer. Eur Urol. 2004;3(Suppl):3–9.
  • Coleman RE, Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s– 6249s.
  • Jin J. Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer. 2011;128(11):2545–2561.
  • Mohamed M, Borchard G, Jordan O. In situ forming implants for local chemotherapy and hyperthermia of bone tumors. J Drug Deliv Sci Technol. 2012;22(5):393–408.
  • Huang W-C, Wu D, Xie Z, et al. Beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res. 2006;66(18):9108–9116.
  • Sleep DJ, Nelson JB, Petrylak DP, et al. Clinical benefit of atrasentan for men with metastatic hormone refractory PCa metastatic to bone. Oncol J Clin. 2006;22(18S):2006–4630.
  • Mundy GR. Metastasis: metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2:584–593.
  • Liao J, Li X, Koh AJ, et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer. 2008;123(10):2267–2278.
  • Roodman G. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–1664.
  • Rahim F, Hajizamani S, Mortaz E, et al. Molecular regulation of bone marrow metastasis in prostate and breast cancer. Bone Marrow Res. 2014;2014:1–12.
  • Rucci N, Angelucci A. Prostate cancer and bone: the elective affinities. Biomed Res Int. 2014;2014:1–14.
  • Browne G, Taipaleenmäki H, Stein GS, et al. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab. 2014;25(6):320–327.
  • Cooper CR, Pienta KJ. Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview. Prostate Cancer Prostatic Dis. 2000;3(1):6–12.
  • Hassan O, Ahmad A, Sethi S, et al. Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol. BioMed Central Ltd. 2012;5(1):9.
  • Vira D, Basak SK, Veena MS, et al. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev. 2012;31:733–751.
  • Spike BT, Wahl GM. p53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer. 2011;2:404–419.
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428.
  • Haider M, Zhang X, Coleman I, et al. Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases. Clin Exp Metastasis. 2016;33(3):239–248.
  • Patel LR, Camacho DF, Shiozawa Y, et al. Mechanisms of cancer cell metastasis to the bone: a multistep process. Futur Oncol. 2011;7(11):1285–1297.
  • Logothetis CJ, Lin S. Osteoblasts in prostate cancer metastasis to bone. Nat Rev. 2005;5(January):21–28.
  • Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–1564.
  • Kesmodel SB, Spitz FR. Gene therapy for cancer and metastatic disease. Expert Rev Mol Med. 2003;5(June):1–18.
  • Gout S, Tremblay PL, Huot J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis. 2008;25:335–344.
  • Thobe MN, Clark RJ, Bainer RO, et al. From prostate to bone: key players in prostate cancer bone metastasis. Cancers (Basel). 2011;3(1):478–493.
  • Sung S-Y, Hsieh C-L, Wu D, et al. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr Probl Cancer. 2007;31(April):36–100.
  • Croset M, Santini D, Iuliani M, et al., et al. MicroRNAs and bone metastasis: a new challenge. Molecules. 2014;19:10115–10128.
  • Pantano F, Zoccoli A, Iuliani M, et al. Targeting bone metastases: new drugs for new targets. Clin Rev Bone Min Metab. 2013;11:103–112.
  • Kingsley LA, Fournier PGJ, Chirgwin JM, et al. Molecular biology of bone metastasis. Mol Cancer Ther. 2007;6:2609–2617.
  • Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–425. Nature Publishing Group
  • Chung LWK, Isaac WC, Simons JW. Prostate cancer biology, genetics and the new therapeutics. 2nd Ed. New York: Humana Press; 2007. p. 508.
  • Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25:573–587.
  • Desai B, Rogers MJ, Chellaiah MA. Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer. 2007;6:18.
  • Kukita A, Kukita T. Multifunctional properties of RANKL/RANK in cell differentiation, proliferation and metastasis. Future Oncol. 2013;9(11):1609–1622.
  • Liu C, Kelnar K, Liu B, et al. Identification of miR-34a as a potent inhibitor of prostate cancer progenitor cells and metastasis by directly repressing CD44. Nat. 2011;17(2):211–215.
  • Lian JB, Stein GS, Wijnen AJV, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 2012 Jan 31;8(4):212–227.
  • Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–19.
  • Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer. 1999;6:333–347.
  • Keller ET, Brown J. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem. 2004 Mar 1;91(4):718–729.
  • Ye L, Kynaston H, Wg J. Bone metastasis in prostate cancer: molecular and cellular mechanisms. Int J Mol Med. 2007;20:103–111.
  • Pratap J, Lian JB, Javed A, et al. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006;25:589–600.
  • Zhang X, Akech J, Browne G, et al. Runx2-smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer. 2015;136:1321–1332.
  • Tsai M, Lin Y, Chen W, et al. Runx2 and osterix gene expression in human bone marrow stromal cells are mediated by far-infrared radiation. Proceed World Congress Engineer. 2011;III:2690–2694.
  • Jonason JH, Xiao G, Zhang M, et al. Post-translational regulation of Runx2 in bone and cartilage. J Dent Res. 2009;88(8):693–703.
  • Rokavec M, Li H, Jiang L, et al. The p53/miR-34 axis in development and disease. J Mol Cell Biol. 2014;6:214–230.
  • Bader AG, Lammers P. The therapeutic potential of microRNAs. Innov Pharm Technol. 2012;(March)52–55.
  • Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs – the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9(APrIl):293–302.
  • Yan K, Gao J, Yang T, et al., MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 2012;7(3):e33778.
  • Yang S, Li Y, Gao J, et al. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene. 2013;32:4294–4303.
  • Thieu W, Tilki D, DeVere White RW, et al. The role of microRNA in castration-resistant prostate cancer. Urol Oncol Semin Orig Investig. 2014;32(5):517–523.
  • Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in prostate cancer. Oncotarget. 2014;5(17):7217–7259.
  • Grasso CS, Wu Y, Robinson DR, et al. The mutational landscape of lethal castrate resistant prostate cancer. Nature. 2013;487(7406):239–243.
  • Lichner Z, Ding Q, Samaan S, et al. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. J Pathol. 2015;237(2):226–237.
  • Corcoran C, Rani S, O’Driscoll L. MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate. 2014;74(13):1320–1334.
  • Corcoran C, Rani S, O’Brien K, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999.
  • Zhou G, Shi X, Zhang J, et al. MicroRNAs in osteosarcoma: from biological players to clinical contributors, a review. J Int Med Res. 2013;41:1–12.
  • Wei J, Shi Y, Zheng L, et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol. 2012;197(4):509–521.
  • Wang M, Ren D, Guo W, et al. Loss of miR100 enhances migration, invasion, EMT and stemness properties in prostate cancer cells through targeting Argonaute 2. Int J Oncol. 2014;1:362–372.
  • Kapinas K, Delany AM. MicroRNA biogenesis and regulation of bone remodeling. Arthritis Res Ther. 2011;13:220.
  • Reis ST, Timoszczuk LS, Pontes-Junior J, et al. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics (Sao Paulo). 2013;68(3):652–657.
  • Abou-kheir W, Mouhieddine TH, Itani MM, et al. Bone metastatic prostate cancer and resistance to tyrosine kinase inhibitors: an intimate relationship between loss of miR-203 and up-regulation of EGFR signaling. Rna Dis. 2014;1:e345.
  • Saini S, Majid S, Yamamura S, et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(7):5287–5298.
  • Abba M, Patil N, Allgayer H. MicroRNAs in the regulation of MMPs and metastasis. Cancers (Basel). 2014;6:625–645.
  • Xu B, Niu X, Zhang X, et al. MiR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350:207–213.
  • Fan X, Chen X, Deng W, et al. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer. 2013;13:61.
  • Siu MK, Tsai Y-C, Chang Y-S, et al. Transforming growth factor-β promotes prostate bone metastasis through induction of microRNA-96 and activation of the mTOR pathway. Oncogene. 2015;34(36):4767–4776.
  • Fendler A, Jung M, Stephan C, et al. The antiapoptotic function of miR-96 in prostate cancer by inhibition of FOXO1. PLoS One. 2013;8(11):1–13.
  • Misso G, Teresa M, Martino D, et al. Mir-34 : A new weapon against cancer ? Mol Ther Nucleic Acids. 2014;3(e194):1–16.
  • Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–743.
  • Christoffersen NR, Shalgi R, Frankel LB, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. Nature Publishing Group;. 2009;17(2):236–245.
  • Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17:1298–1307.
  • Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis. 2014;5:e1327.
  • Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–752.
  • Kong D, Heath E, Chen W, et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR- DIM treatment. Am J Transl Res. 2013;6(1):102–103.
  • Hui C, Yujie F, Lijia Y, et al. MicroRNA-34a and microRNA-21 play roles in the chemopreventive effects of 3,6-dihydroxyflavone on 1-methyl-1-nitrosourea-induced breast carcinogenesis. Breast Cancer Res. 2012;14(3):R80. BioMed Central Ltd
  • Bader AG. MiR-34 – a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3(July):1–9.
  • Chen W, Liu S, Chang Y. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras-activated prostate cancer. Oncotarget. 2014;6(1):441–457.
  • Chen J, Jiang CC, Jin L, et al. Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27(3):409–416.
  • Frieling JS, Basanta D, Lynch CC. Current and emerging therapies for bone metastatic castration-resistant prostate cancer. Cancer Control. 2015;22(1):109–120.
  • Gaur S, Wen Y, Song JH, et al. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget. 2015;6(30):29161–29177.
  • Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. Nature Publishing Group. 2012;13(1):7–12.
  • Ayub SG, Kaul D, Ayub T. Micro-dissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet. 2015;208(6):289–302. Elsevier Inc.
  • Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther. 2013;140:223–238.
  • Zhang A, Zhao JC, Kim J, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer article LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate. CellReports. 2015;13(1):209–221. The Authors
  • Chiyomaru T, Yamamura S, Fukuhara S, et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One. 2013;8(8):e70372.
  • Krzeszinski JY, Wei W, Huynh H, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. Nature Publishing Group. 2014;512(7515):431–435.
  • Padua D, Massagué J. Roles of TGFbeta in metastasis. Cell Res. 2009;19:89–102.
  • Datta NS. PTH and PTHrP signaling in osteoblasts. Cell Signal. 2009;21(8):1245–1254.
  • Wozniak MA, Kwong L, Chodniewicz D, et al. R-Ras controls membrane protrusion and cell migration through the apatial regulation of Rac and Rho. Mol Biol Cell. 2005;16:84–96.
  • Seong BK, Lau J, Adderley T, et al. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene. 2015;34(27):3582–3592.
  • McCarthy HO, Coulter JA, Worthington J, et al. Human osteocalcin: a strong promoter for nitric oxide synthase gene therapy, with specificity for hormone refractory prostate cancer. J Gene Med. 2007;9(6):511–520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.