252
Views
39
CrossRef citations to date
0
Altmetric
Review

Mir-221/222 are promising targets for innovative anticancer therapy

, , , , &
Pages 1099-1108 | Received 03 Dec 2015, Accepted 02 Mar 2016, Published online: 21 Mar 2016

References

  • Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18(3):215–222. doi:10.1097/PPO.0b013e318250c001. PubMed PMID: 22647357; PubMed Central PMCID: PMC3528102.
  • Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–469. doi:10.1016/j.molmed.2014.06.005. PubMed PMID: 25027972.
  • Medina R, Zaidi SK, Liu CG, et al.. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 2008;68(8):2773–2780. doi:10.1158/0008-5472.CAN-07-6754. PubMed PMID: 18413744; PubMed Central PMCID: PMC3613850.
  • Zhang C, Kang C, You Y, et al.. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–1660. PubMed PMID: 19424584.
  • Zhang CZ, Zhang JX, Zhang AL, et al.. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010;9:229. doi:10.1186/1476-4598-9-229. PubMed PMID: 20813046; PubMed Central PMCID: PMC2939570.
  • Quintavalle C, Garofalo M, Zanca C, et al.. miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene. 2012;31(7):858–868. doi:10.1038/onc.2011.280. PubMed PMID: 21743492; PubMed Central PMCID: PMC4299860.
  • Gottardo F, Liu CG, Ferracin M, et al.. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25(5):387–392. doi:10.1016/j.urolonc.2007.01.019. PubMed PMID: 17826655.
  • Fu B, Wang Y, Zhang X, et al.. MiR-221-induced PUMA silencing mediates immune evasion of bladder cancer cells. Int J Oncol. 2015;46(3):1169–1180. doi:10.3892/ijo.2015.2837. PubMed PMID: 25585941.
  • Hui AB, Shi W, Boutros PC, et al.. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest. 2009;89(5):597–606. doi:10.1038/labinvest.2009.12. PubMed PMID: 19290006.
  • Zhao -J-J, Lin J, Yang H, et al.. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–31086. doi:10.1074/jbc.M806041200. PubMed PMID: 18790736; PubMed Central PMCID: PMC2576549.
  • Radojicic J, Zaravinos A, Vrekoussis T, et al.. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle. 2011;10(3):507–517. PubMed PMID: 21270527.
  • Stinson S, Lackner MR, Adai AT, et al.. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4(186):pt5. doi:10.1126/scisignal.2002258. PubMed PMID: 21868360.
  • Falkenberg N, Anastasov N, Rappl K, et al.. MiR-221/-222 differentiate prognostic groups in advanced breast cancers and influence cell invasion. Br J Cancer. 2013;109(10):2714–2723. doi:10.1038/bjc.2013.625. PubMed PMID: 24129242; PubMed Central PMCID: PMC3833215.
  • Zhang C, Zhang J, Hao J, et al.. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med. 2012;10:119. doi:10.1186/1479-5876-10-119. PubMed PMID: 22681957; PubMed Central PMCID: PMC3403924.
  • Li W, Guo F, Wang P, et al.. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med. 2014;14(1):185–195. PubMed PMID: 24295494.
  • Pineau P, Volinia S, McJunkin K, et al.. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(1):264–269. doi:10.1073/pnas.0907904107. PubMed PMID: 20018759; PubMed Central PMCID: PMC2806773.
  • Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. BMC Cancer. 2013;13:21. doi:10.1186/1471-2407-13-21. PubMed PMID: 23320393; PubMed Central PMCID: PMC3551704.
  • Fornari F, Gramantieri L, Ferracin M, et al.. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene. 2008;27(43):5651–5661. doi:10.1038/onc.2008.178. PubMed PMID: 18521080.
  • Bae HJ, Jung KH, Eun JW, et al.. MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer. J Hepatol. 2015;63(2):408–419. doi:10.1016/j.jhep.2015.03.019. PubMed PMID: 25817558.
  • Callegari E, Elamin BK, Giannone F, et al.. Liver tumorigenicity promoted by microRNA-221 in a mouse transgenic model. Hepatology. 2012;56(3):1025–1033. doi:10.1002/hep.25747. PubMed PMID: 22473819.
  • Gramantieri L, Fornari F, Callegari E, et al.. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med. 2008;12(6A):2189–2204. doi:10.1111/j.1582-4934.2008.00533.x. PubMed PMID: 19120703.
  • He XX, Guo AY, Xu CR, et al.. Bioinformatics analysis identifies miR-221 as a core regulator in hepatocellular carcinoma and its silencing suppresses tumor properties. Oncol Rep. 2014;32(3):1200–1210. doi:10.3892/or.2014.3306. PubMed PMID: 24993451.
  • Tanaka R, Tomosugi M, Horinaka M, et al.. Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL sensitivity through DR5 up-regulation in pancreatic cancer cells. Plos One. 2015;10(5):e0125779. doi:10.1371/journal.pone.0125779. PubMed PMID: 25955843; PubMed Central PMCID: PMC4425682.
  • Passadouro M, Pedroso De Lima MC, Faneca H. MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer. Int J Nanomedicine. 2014;9:3203–3217. doi:10.2147/IJN.S64456. PubMed PMID: 25061297; PubMed Central PMCID: PMC4086670.
  • Xu L, Dai WQ, Xu XF, et al.. Effects of multiple-target anti-microRNA antisense oligodeoxyribonucleotides on proliferation and migration of gastric cancer cells. Asian Pacific J Cancer Prevent: APJCP. 2012;13(7):3203–3207. PubMed PMID: 22994734.
  • Sun T, Wang X, He HH, et al.. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene. 2014;33(21):2790–2800. doi:10.1038/onc.2013.230. PubMed PMID: 23770851; PubMed Central PMCID: PMC3883998.
  • Galardi S, Mercatelli N, Giorda E, et al.. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007;282(32):23716–23724. doi:10.1074/jbc.M701805200. PubMed PMID: 17569667.
  • Spahn M, Kneitz S, Scholz CJ, et al.. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer J Int Du Cancer. 2010;127(2):394–403. doi:10.1002/ijc.24715. PubMed PMID: 19585579.
  • Lukacs RU, Memarzadeh S, Wu H, et al.. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7(6):682–693. doi:10.1016/j.stem.2010.11.013. PubMed PMID: 21112563; PubMed Central PMCID: PMC3019762.
  • Yang X, Yang Y, Gan R, et al.. Down-regulation of mir-221 and mir-222 restrain prostate cancer cell proliferation and migration that is partly mediated by activation of SIRT1. Plos One. 2014;9(6):e98833. doi:10.1371/journal.pone.0098833. PubMed PMID: 24892674; PubMed Central PMCID: PMC4043919.
  • Mercatelli N, Coppola V, Bonci D, et al.. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. Plos One. 2008;3(12):e4029. doi:10.1371/journal.pone.0004029. PubMed PMID: 19107213; PubMed Central PMCID: PMC2603596.
  • Miller TE, Ghoshal K, Ramaswamy B, et al.. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–29903. doi:10.1074/jbc.M804612200. PubMed PMID: 18708351; PubMed Central PMCID: PMC2573063.
  • Roscigno G, Quintavalle C, Donnarumma E, et al.. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 2015; doi:10.18632/oncotarget.5979. PubMed PMID: 26556862.
  • Ke J, Zhao Z, Hong SH, et al.. Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget. 2015;6(6):3709–3721. doi:10.18632/oncotarget.2888. PubMed PMID: 25686829; PubMed Central PMCID: PMC4414148.
  • Li Y, Liang C, Ma H, et al.. miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer. Molecules. 2014;19(6):7122–7137. doi:10.3390/molecules19067122. PubMed PMID: 24886939.
  • Nassirpour R, Mehta PP, Baxi SM, et al.. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. Plos One. 2013;8(4):e62170. doi:10.1371/journal.pone.0062170. PubMed PMID: 23637992; PubMed Central PMCID: PMC3634767.
  • Frenquelli M, Muzio M, Scielzo C, et al.. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood. 2010;115(19):3949–3959. doi:10.1182/blood-2009-11-254656. PubMed PMID: 20203269.
  • Rommer A, Steinleitner K, Hackl H, et al.. Overexpression of primary microRNA 221/222 in acute myeloid leukemia. BMC Cancer. 2013;13:364. doi:10.1186/1471-2407-13-364. PubMed PMID: 23895238; PubMed Central PMCID: PMC3733744.
  • Di Martino MT, Gulla A, Cantafio ME, et al.. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma. Oncotarget. 2013;4(2):242–255. PubMed PMID: 23479461; PubMed Central PMCID: PMC3712570.
  • Di Martino MT, Gulla A, Gallo Cantafio ME, et al.. In vitro and in vivo activity of a novel locked nucleic acid (LNA)-inhibitor-miR-221 against multiple myeloma cells. Plos One. 2014;9(2):e89659. [ Epub 2014/03/04]. doi:10.1371/journal.pone.0089659. PubMed PMID: 24586944; PubMed Central PMCID: PMC3931823.
  • Gulla A, Di Martino MT, Gallo Cantafio ME, et al.. A 13 mer LNA-i-miR-221 inhibitor restores drug-sensitivity in melphalan-refractory multiple myeloma cells. Clinic Cancer Res: Official J Am Assoc Cancer Res. 2015. doi:10.1158/1078-0432.CCR-15-0489. PubMed PMID: 26527748
  • Song C, Chen H, Wang T, et al.. Expression profile analysis of microRNAs in prostate cancer by next-generation sequencing. Prostate. 2015;75(5):500–516. doi:10.1002/pros.22936. PubMed PMID: 25597612.
  • Lee EJ, Gusev Y, Jiang J, et al.. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer J Int Du Cancer. 2007;120(5):1046–1054. doi:10.1002/ijc.22394. PubMed PMID: 17149698; PubMed Central PMCID: PMC2680248.
  • Zhang Y, Li M, Wang H, et al.. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg. 2009;33(4):698–709. doi:10.1007/s00268-008-9833-0. PubMed PMID: 19030927; PubMed Central PMCID: PMC2933040.
  • He H, Jazdzewski K, Li W, et al.. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102(52):19075–19080. doi:10.1073/pnas.0509603102. PubMed PMID: 16365291; PubMed Central PMCID: PMC1323209.
  • Visone R, Russo L, Pallante P, et al.. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14(3):791–798. doi:10.1677/ERC-07-0129. PubMed PMID: 17914108.
  • Lionetti M, Biasiolo M, Agnelli L, et al.. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood. 2009;114(25):e20–6. doi:10.1182/blood-2009-08-237495. PubMed PMID: 19846888.
  • Lionetti M, Agnelli L, Mosca L, et al.. Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes Cancer. 2009;48(6):521–531. doi:10.1002/gcc.20660. PubMed PMID: 19306352.
  • Le Sage C, Nagel R, Egan DA, et al.. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. Embo J. 2007;26(15):3699–3708. doi:10.1038/sj.emboj.7601790. PubMed PMID: 17627278; PubMed Central PMCID: PMC1949005.
  • Fu X, Wang Q, Chen J, et al.. Clinical significance of miR-221 and its inverse correlation with p27Kip(1) in hepatocellular carcinoma. Mol Biol Rep. 2011;38(5):3029–3035. doi:10.1007/s11033-010-9969-5. PubMed PMID: 20146005.
  • Garofalo M, Quintavalle C, Di Leva G, et al.. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–3855. doi:10.1038/onc.2008.6. PubMed PMID: 18246122.
  • Garofalo M, Di Leva G, Romano G, et al.. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell. 2009;16(6):498–509. doi:10.1016/j.ccr.2009.10.014. PubMed PMID: 19962668; PubMed Central PMCID: PMC2796583.
  • Gramantieri L, Fornari F, Ferracin M, et al.. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clinic Cancer Res: Official J Am Assoc Cancer Res. 2009;15(16):5073–5081. doi:10.1158/1078-0432.CCR-09-0092. PubMed PMID: 19671867; PubMed Central PMCID: PMC3900721.
  • Liu J, Cao J, Zhao X. miR-221 facilitates the TGFbeta1-induced epithelial-mesenchymal transition in human bladder cancer cells by targeting STMN1. BMC Urol. 2015;15:36. doi:10.1186/s12894-015-0028-3. PubMed PMID: 25928257; PubMed Central PMCID: PMC4423111.
  • Negrini M, Gramantieri L, Sabbioni S, et al.. microRNA involvement in hepatocellular carcinoma. Anticancer Agents Med Chem. 2011;11(6):500–521. PubMed PMID: 21554203
  • Fornari F, Milazzo M, Galassi M, et al.. p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma. Mol Cancer Res: MCR. 2014;12(2):203–216. doi:10.1158/1541-7786.MCR-13-0312-T. PubMed PMID: 24324033.
  • Moshiri F, Callegari E, D’Abundo L, et al.. Inhibiting the oncogenic mir-221 by microRNA sponge: toward microRNA-based therapeutics for hepatocellular carcinoma. Gastroenterol Hepatol Bed Bench. 2014;7(1):43–54. PubMed PMID: 25436097; PubMed Central PMCID: PMC4017557.
  • Pichiorri F, Palmieri D, De Luca L, et al.. In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med. 2013;210(5):951–968. doi:10.1084/jem.20120950. PubMed PMID: 23610125; PubMed Central PMCID: PMC3646490.
  • Pickering BF, Yu D. Van Dyke MW. Nucleolin protein interacts with microprocessor complex to affect biogenesis of microRNAs 15a and 16. J Biol Chem. 2011;286(51):44095–44103. doi:10.1074/jbc.M111.265439. PubMed PMID: 22049078; PubMed Central PMCID: PMC3243533.
  • Rao X, Di Leva G, Li M, et al.. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30(9):1082–1097. doi:10.1038/onc.2010.487. PubMed PMID: 21057537; PubMed Central PMCID: PMC3342929.
  • Brognara E, Fabbri E, Bazzoli E, et al.. Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. J Neurooncol. 2014;118(1):19–28. doi:10.1007/s11060-014-1405-6. PubMed PMID: 24595467.
  • Ihle MA, Trautmann M, Kuenstlinger H, et al.. miRNA-221 and miRNA-222 induce apoptosis via the KIT/AKT signalling pathway in gastrointestinal stromal tumours. Mol Oncol. 2015. doi:10.1016/j.molonc.2015.03.013. PubMed PMID: 25898773.
  • Felicetti F, Errico MC, Segnalini P, et al.. MicroRNA-221 and -222 pathway controls melanoma progression. Expert Rev Anticancer Ther. 2008;8(11):1759–1765. doi:10.1586/14737140.8.11.1759. PubMed PMID: 18983236.
  • Tassone P, Tagliaferri P. Editorial: New approaches in the treatment of multiple myeloma: from target-based agents to the new era of microRNAs (dedicated to the memory of Prof. Salvatore Venuta). Curr Cancer Drug Targets. 2012;12(7):741–742. Epub 2012/09/01. PubMed PMID: 22934915.
  • Pitari MR, Rossi M, Amodio N, et al.. Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget. 2015;6(29):27343–27358. [ Epub 2015/07/15]. doi:10.18632/oncotarget.4398. PubMed PMID: 26160841.
  • Raimondi L, Amodio N, Di Martino MT, et al.. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5(10):3039–3054. [Epub 2014/05/21]. PubMed PMID: 24839982; PubMed Central PMCID: PMC4102790.
  • Rossi M, Amodio N, Di Martino MT, et al.. From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario. Curr Drug Targets. 2013;14(10):1144–1149. [Epub 2013/07/10]. PubMed PMID: 23834146.
  • Rossi M, Amodio N, Di Martino MT, et al.. MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr Pharm Biotechnol. 2014;15(5):459–467. [Epub 2014/05/23]. PubMed PMID: 24846067.
  • Rossi M, Pitari MR, Amodio N, et al.. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013;228(7):1506–1515. [Epub 2012/12/21]. doi:10.1002/jcp.24306.. PubMed PMID: 23254643.
  • Scognamiglio I, Di Martino MT, Campani V, et al.. Transferrin-conjugated SNALPs encapsulating 2ʹ-O-methylated miR-34a for the treatment of multiple myeloma. Biomed Res Int. 2014;2014:217365. [Epub 2014/04/01]. doi:10.1155/2014/217365. PubMed PMID: 24683542; PubMed Central PMCID: PMC3943297.
  • Morelli E, Leone E, Cantafio ME, et al.. Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo. Leukemia. 2015;29(11):2173–2183. [Epub 2015/05/20]. doi:10.1038/leu.2015.124. PubMed PMID: 25987254.
  • Misso G, Di Martino MT, De Rosa G, et al.. Mir-34: a new weapon against cancer?. Mol Ther Nucleic Acids. 2014;3:e194. [Epub 2014/09/24]. doi:10.1038/mtna.2014.47. PubMed PMID: 25247240; PubMed Central PMCID: PMC4222652.
  • Misso G, Zappavigna S, Castellano M, et al.. Emerging pathways as individualized therapeutic target of multiple myeloma. Expert Opin Biol Ther. 2013;13(Suppl 1):S95–109. [Epub 2013/06/07]. doi:10.1517/14712598.2013.807338. PubMed PMID: 23738692.
  • Leone E, Morelli E, Di Martino MT, et al.. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth. Clinic Cancer Res: Official J Am Assoc Cancer Res. 2013;19(8):2096–2106. Epub 2013/03/01. doi:10.1158/1078-0432.CCR-12-3325. PubMed PMID: 23446999; PubMed Central PMCID: PMC4147955.
  • Leotta M, Biamonte L, Raimondi L, et al.. A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J Cell Physiol. 2014;229(12):2106–2116. Epub 2014/05/14. doi:10.1002/jcp.24669. PubMed PMID: 24819167.
  • Lionetti M, Agnelli L, Lombardi L, et al.. MicroRNAs in the pathobiology of multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):823–837. Epub 2012/06/08. PubMed PMID: 22671930.
  • Lionetti M, Musto P, Di Martino MT, et al.. Biological and clinical relevance of miRNA expression signatures in primary plasma cell leukemia. Clinic Cancer Res: Official J Am Assoc Cancer Res. 2013;19(12):3130–3142. [Epub 2013/04/25]. doi:10.1158/1078-0432.CCR-12-2043. PubMed PMID: 23613318.
  • Di Martino MT, Guzzi PH, Caracciolo D, et al.. Integrated analysis of microRNAs, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma. Oncotarget. 2015;6(22):19132–19147. Epub 2015/06/10. PubMed PMID: 26056083.
  • Di Martino MT, Leone E, Amodio N, et al.. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clinic Cancer Res: Official J Am Assoc Cancer Res. 2012;18(22):6260–6270. [Epub 2012/10/05]. doi:10.1158/1078-0432.CCR-12-1708. PubMed PMID: 23035210; PubMed Central PMCID: PMC4453928.
  • Agnelli L, Tassone P, Neri A. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing. Expert Opin Biol Ther. 2013;13(Suppl 1):S55–68. [Epub 2013/04/26]. doi:10.1517/14712598.2013.793305. PubMed PMID: 23614397.
  • Amodio N, Bellizzi D, Leotta M, et al.. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle. 2013;12(23):3650–3662. [Epub 2013/10/05]. doi:10.4161/cc.26585. PubMed PMID: 24091729; PubMed Central PMCID: PMC3903716.
  • Amodio N, Di Martino MT, Foresta U, et al.. miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis. 2012;3:e436. [Epub 2012/11/30]. doi:10.1038/cddis.2012.175. PubMed PMID: 23190608; PubMed Central PMCID: PMC3542610.
  • Amodio N, Di Martino MT, Neri A, et al.. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13(Suppl 1):S125–37. [Epub 2013/05/23]. doi:10.1517/14712598.2013.796356. PubMed PMID: 23692413.
  • Amodio N, Leotta M, Bellizzi D, et al.. DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget. 2012;3(10):1246–1258. [Epub 2012/10/27]. PubMed PMID: 23100393; PubMed Central PMCID: PMC3717964.
  • Amodio N, Rossi M, Raimondi L, et al.. miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget. 2015;6(15):12837–12861. [Epub 2015/05/15]. PubMed PMID: 25968566; PubMed Central PMCID: PMC4536984.
  • Calura E, Bisognin A, Manzoni M, et al. Disentangling the microRNA regulatory milieu in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients. Oncotarget. 2015. [Epub 2015/10/27]. doi:10.18632/oncotarget.6151. PubMed PMID: 26496024.
  • Di Martino MT, Amodio N, Tassone P, et al.. Functional analysis of microRNA in multiple myeloma. Methods Mol Biol. 2015. [Epub 2015/05/15]. doi:10.1007/7651_2015_250. PubMed PMID: 25971914.
  • Di Martino MT, Campani V, Misso G, et al.. In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. Plos One. 2014;9(2):e90005. [Epub 2014/03/04]. doi:10.1371/journal.pone.0090005. PubMed PMID: 24587182; PubMed Central PMCID: PMC3937395.
  • Calimeri T, Battista E, Conforti F, et al.. A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells. Leukemia. 2011;25(4):707–711. [Epub 2011/01/15]. doi:10.1038/leu.2010.300. PubMed PMID: 21233838; PubMed Central PMCID: PMC3089835.
  • Tassone P, Neri P, Burger R, et al.. Mouse models as a translational platform for the development of new therapeutic agents in multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):814–822. [Epub 2012/06/08]. PubMed PMID: 22671927; PubMed Central PMCID: PMC3587184.
  • Tagliaferri P, Rossi M, Di Martino MT, et al.. Promises and challenges of MicroRNA-based treatment of multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):838–846. [Epub 2012/06/08]. PubMed PMID: 22671926; PubMed Central PMCID: PMC3504921..
  • Janssen HL, Reesink HW, Lawitz EJ, et al.. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–1694. doi:10.1056/NEJMoa1209026. PubMed PMID: 23534542.
  • Xue J, Niu J, Wu J, et al.. MicroRNAs in cancer therapeutic response: Friend and foe. World J Clin Oncol. 2014;5(4):730–743. doi:10.5306/wjco.v5.i4.730. PubMed PMID: 25302173; PubMed Central PMCID: PMC4129536.
  • Mishra PJ. The miRNA-drug resistance connection: a new era of personalized medicine using noncoding RNA begins. Pharmacogenomics. 2012;13(12):1321–1324. doi:10.2217/pgs.12.121. PubMed PMID: 22966880; PubMed Central PMCID: PMC3464977.
  • Garofalo M, Quintavalle C, Romano G, et al.. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med. 2012;12(1):27–33. PubMed PMID: 22082479; PubMed Central PMCID: PMC3673714.
  • Garofalo M, Croce CM. MicroRNAs as therapeutic targets in chemoresistance. Drug Resistance Updates: Rev Comment Antimicrob Anticancer Chemother. 2013;16(3–5):47–59. doi:10.1016/j.drup.2013.05.001. PubMed PMID: 23757365; PubMed Central PMCID: PMC3858390.
  • Garofalo M, Romano G, Di Leva G, et al.. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2012;18(1):74–82. doi:10.1038/nm.2577. PubMed PMID: 22157681; PubMed Central PMCID: PMC3467100.
  • Bueno MJ. Malumbres MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;1812(5):592–601. doi:10.1016/j.bbadis.2011.02.002. PubMed PMID: 21315819.
  • Wei Y, Lai X, Yu S, et al.. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423–431. doi:10.1007/s10549-014-3037-0. PubMed PMID: 25007959.
  • Acunzo M, Visone R, Romano G, et al.. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene. 2012;31(5):634–642. doi:10.1038/onc.2011.260. PubMed PMID: 21706050; PubMed Central PMCID: PMC3719419.
  • Zhao G, Cai C, Yang T, et al.. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. Plos One. 2013;8(1):e53906. doi:10.1371/journal.pone.0053906. PubMed PMID: 23372675; PubMed Central PMCID: PMC3553141.
  • Ye X, Bai W, Zhu H, et al.. MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. BMB Rep. 2014;47(5):268–273. PubMed PMID: 24286315; PubMed Central PMCID: PMC4163864.
  • Chen L, Zhang J, Han L, et al.. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep. 2012;27(3):854–860. doi:10.3892/or.2011.1535. PubMed PMID: 22075712.
  • Quintavalle C, Mangani D, Roscigno G, et al.. MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. Plos One. 2013;8(9):e74466. doi:10.1371/journal.pone.0074466. PubMed PMID: 24147153; PubMed Central PMCID: PMC3798259.
  • Cortez MA, Bueso-Ramos C, Ferdin J, et al.. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Reviews Clin Oncol. 2011;8(8):467–477. doi:10.1038/nrclinonc.2011.76. PubMed PMID: 21647195; PubMed Central PMCID: PMC3423224.
  • Zhang R, Pang B, Xin T, et al.. Plasma miR-221/222 family as novel descriptive and prognostic biomarkers for Glioma. Mol Neurobiol. 2015; doi:10.1007/s12035-014-9079-9. PubMed PMID: 25636684
  • Hong F, Li Y, Xu Y, et al.. Prognostic significance of serum microRNA-221 expression in human epithelial ovarian cancer. J Int Med Res. 2013;41(1):64–71. doi:10.1177/0300060513475759. PubMed PMID: 23569131.
  • Li J, Wang Y, Yu W, et al.. Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun. 2011;406(1):70–73. PubMed PMID: 21295551. doi:10.1016/j.bbrc.2011.01.111.
  • Song MY, Pan KF, Su HJ, et al.. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. Plos One. 2012;7(3):e33608. doi:10.1371/journal.pone.0033608. PubMed PMID: 22432036; PubMed Central PMCID: PMC3303856.
  • Kanemaru H, Fukushima S, Yamashita J, et al.. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci. 2011;61(3):187–193. doi:10.1016/j.jdermsci.2010.12.010. PubMed PMID: 21273047.
  • Farrell JJ, Toste P, Wu N, et al.. Endoscopically acquired pancreatic cyst fluid microRNA 21 and 221 are associated with invasive cancer. Am J Gastroenterol. 2013;108(8):1352–1359. doi:10.1038/ajg.2013.167. PubMed PMID: 23752880.
  • Kawaguchi T, Komatsu S, Ichikawa D, et al.. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer. 2013;108(2):361–369. doi:10.1038/bjc.2012.546. PubMed PMID: 23329235; PubMed Central PMCID: PMC3566805.
  • Huang JJ, Yu J, Li JY, et al. Circulating microRNA expression is associated with genetic subtype and survival of multiple myeloma. Med Oncol. 2012;29(4):2402–2408. doi:10.1007/s12032-012-0210-3. PubMed PMID: 22447484.
  • Yang J, Zhang JY, Chen J, et al.. Prognostic role of microRNA-221 in various human malignant neoplasms: a meta-analysis of 20 related studies. Plos One. 2014;9(1):e87606. doi:10.1371/journal.pone.0087606. PubMed PMID: 24475314; PubMed Central PMCID: PMC3903772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.