19
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging therapeutic targets in paediatric kidney diseases

&
Pages 29-38 | Published online: 25 Feb 2005

Bibliography

  • BARASCH J, YANG J, WARE B et al.: Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell (1999) 99:377–386.
  • ••A recent breakthrough in the identification of inducers of thedifferentiation of the nephrons.
  • BARD J, DAVIES J, KARAVANOVA I, LEHTONEN E, SARIOLA H, VAINIO S: Kidney development: the inductive interactions. Semin. Cell Devel. Biol. (1996) 7:195–202.
  • LECHNER MS, DRESSLER GR: The molecular basis ofembryonic kidney development. Mech. Devel. (1997) 62:105–120.
  • DAVIES JA, BARD JBL: The development of the kidney. Curr. Topic. Dev. Biol. (1998) 39:245–301.
  • HERZLINGER D, QIAO J, COHEN D, RAMAKRISHNA N, BROWN AM: Induction Of kidney epithelial morpho-genesis by cells expressing Wnt-1. Devel. Biol. (1994) 166:815–818.
  • •First experimental study showing that Wnt-proteins are important in kidney morphogenesis.
  • DAVIES JA, GARROD DR: Induction of early stages of kidney tubule differentiation by lithium ions. Devel. Biol. (1995) 167(1):50–60.
  • •First successful experiment to induce kidney morpho-genesis chemically.
  • KARAVANOVA ID, DOVE LF, RESAU JH, PERANTONI AO:Conditioned medium from a rat ureteric bud cell line in combination with bFGF induces complete differen-tiation of isolated metanephric mesenchyme. Develop-ment (1996) 122:4159–4167.
  • KISPERT A, VAINIO S, MCMAHON AP: Wnt-4 is amesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development (1998) 125:4225–4234.
  • STARK K, VAINIO S, VASSILEVA G, MCMAHON AP: Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature (1994) 372:679–683.
  • SARIOLA H, SAINIO K: Tip-top branching ureteric bud. Curr. Opin. Cell Biol. (1997) 9:877–884.
  • SAINIO K, SUVANTO P, DAVIES J et al.: Glial cellline-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development (1997) 124:4077–4087.
  • •A detailed in vitro study on the role of GDNF in kidney morphogenesis, showing also the requirement of other molecules in ureteric branching.
  • TROWERS PR, WOOLF AS, HARDMAN P: Glial cell line-derived neurotrophic factor stimulates ureteric bud outgrowth and enhances survival of ureteric bud cells in vitro. Exp. Nephrol. (1998) 6:337–351.
  • LIN L-FH, DOHERTY DH, LILE JD, BEKTESH S, COLLINS F: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science (1993) 260:1130–1132.
  • ••Primary characterisation of GDNF.
  • OPPENHEIM RW, HOUENOU LJ, JOHNSON JE et al.: Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature (1995) 373:344–346.
  • KOTZBAUER PT, LAMPE PA, HEUCKEROTH RO et al.: Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature (1996) 384:467–470.
  • ••Primary characterisation of neurturin.
  • MILBRANDT J, DE SAUVAGE FJ, FAHRNER TJ et al.: Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron (1998) 20:245–253.
  • ••Primary characterisation of persephin.
  • BALOH RH, TANSEY MG, LAMPE PA et al.: Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRa3-Ret receptor complex. Neuron (1998) 21:1291–1302.
  • ••Primary characterisation of artemin.
  • SAARMA M, SARIOLA H: Other neurotrophic factors:Glial cell line-derived neurotrophic factor (GDNF). Microsc. Res. Tech. (1999) 45:292–302.
  • DURBEC P, MARCOS-GUTIERREZ V, KILKENNY C et al.: GDNF signalling through the Ret receptor tyrosine kinase. Nature (1996) 381:789–793.
  • ••Identification of R et as a signalling receptor for GDNF.
  • TRUPP M, ARENAS E, FAINZILBER M et al.: Functional receptor for GDNF encoded by the cRet proto-oncogene. Nature (1996) 381:785–789.
  • ••Identification of R et as a signalling receptor for GDNF.
  • VEGA QC, WORBY CA, LECHNER MS, DIXON JE, DRESSLER GR: Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase ret and promotes kidney morphogenesis. Proc. Nati Acad. Sci. USA (1996) 93:10657–10661.
  • ••Identification of R et as a signalling receptor for GDNF.
  • TREANOR JJ, GOODMAN L, DE SAUVAGE F et al.: Charac-terization of a multicomponent receptor for GDNF. Nature (1996) 382:80–83.
  • ••Identification of R et as a signalling receptor for GDNF.
  • SCHUCHARDT A, D'AGATI V, LARSSON-BLOMBERG L, COSTANTINI F, PACHNIS V: Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature (1994) 367:380–383.
  • •The phenotypes of GDNF-, GFRal-and Ret-deficient mice are amazingly similar (references 24–28).
  • PICHEL JG, SHEN L, SHENG HZ et al.: Defects in entericinnervation and kidney development in mice lacking GDNF. Nature (1996) 382:73–76.
  • MOORE MW, KLEIN RD, FARINAS I et al.: Renal andneuronal abnormalities in mice lacking GDNF. Nature (1996) 382:76–79.
  • SANCHEZ MP, SILOS-SANTIAGO I, FRISEN J, HE B, LIRASA, BARBACID M: Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature (1996) 382:70–73.
  • CACALANO G, FARINA I, WANG L et al: Ulla1 is anessential receptor component for GDNF in the developing nervous system and kidney. Neuron (1998) 21:53–62.
  • JING S, WEN D, YU Y et al.: GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-a, a novel receptor for GDNF. Cell (1996) 85:1113–1124.
  • •Primary characterisation of a co-receptor for RET, GDNFR-a, that is now called GDNF family receptor a-1.
  • WOOLF AS, KOLATSI-JOANNOU M, HARDMAN P et al: Roles of hepatocyte growth factor/scatter factor and the met receptor in the early development of the metanephros. J. Cell Biol. (1995) 128:171–184.
  • SANFORD L, ORMSBY I, GITTENBERGER DE GROOT A et al.: Transforming growth factor 132 (TGF62) knockout mice have multiple developmental defects that are non-overlapping with other TGF 6 knockout phenotypes. Development (1997) 124:2659–2670.
  • MULLER U, WANG D, DENDA S, MENESIS J, PEDERSEN R, REICHARDT L: Integrin a861 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell (1997) 88:603–613.
  • ••A very selective renal phenotype.
  • HOLMBERG C, JALANKO H, TRYGGVASON K, RAPOLA J: Congenital nephrotic syndrome. In: Paediatric Nephrology (Edition 3). Holliday MA, Barratt T, Avner E, (Eds.), Williams and Wilkins, Baltimore, USA (1998):765–777.
  • KESTILA M, LENKKERI U, MANNIKKO M et al.: Position-ally cloned gene for a novel glomerular protein-nephrin-is mutated in congenital nephrotic syndrome. MoL Cell 1998 1:575–582.
  • ••Primary characterisation of nephrin.
  • LENKKERI U, MANNIKKO M, MCCREADY P et al.: Structure of the gene for congenital nephrotic syndrome of the Finnish type (NPHS1) and characteri-zation of mutations. Am] Hum. Genet. (1999) 64:51–61.
  • RUOTSALAINEN V, LJUNGBERG P, WARTIOVAARA J et al:Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl. Acad. Sci. USA (1999) 96:7962–7967.
  • TRYGGVASON K: Unravelling the mechanisms of theglomerular ultrafiltration: Nephrin, a key component of the slit diaphragm. J. Am. Soc. Nephrol. (1999) 10:2440–2445.
  • IMAI E, ISAKA Y: Strategies of gene transfer to the kidney. Kidney Int. (1998) 53(2) :26 4–272
  • MET C, XU H: ICAM-1 antisense DNA protects renal function against ischemia-reperfusion injury in rats. J. Am. Soc. Nephrol. (1999) 10:448A.
  • KLUTH DC, REES AJ: New approaches to modify glomerular inflammation. J. Nephrol. (1999) 12:66–75.
  • AINSLEY C, KLUTH D, PEARCE W, RESS A: Use of geneti-cally modified macrophages to deliver TGF-61 to inflamed glomeruli. J. Am. Soc. Nephrol. (1999) 10:445A.
  • KLUTH D, PEARCE W, FINLAY S, ANEGON I, REES A: Interleukin-4 gene therapy using adenoviral transfected macrophages in nephrotoxic nephritis. J. Am. Soc. Nephrol (1999) 10:445A.
  • BUDISAVLJEVIC M, FULMER J, SELF S et al.: Atrial natriuretic peptide gene delivery attenuates mesangial cell proliferation in anti-Thyl nephritis. J. Am. Soc. Nephrol. (1999) 10:446A.
  • BORDER WA, NOBLE NA, YAMAMOTO T et al: Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature (1992) 360:361–364.
  • ••A classic study showing the role of TGFI3–1 in thepathogenesis of (experimental) glomerulonephritis.
  • LIPKOWITZ M, BRUGGEMAN L, OLLER S, RAPPAPORT J, KLOTMAN P, KLOTMAN M: Intra-uretral delivery of recombinant adeno-associated virus (rAAV) vectors results in long-term expression in the kidney. J. Am. Soc. Nephrol (1999) 10:447A.
  • ANTIGNAC C, ARDUY C, BECKMANN J: A gene for familial juvenile nephronophtisis (recessive medullary cystic kidney disease) maps to chromo-some 2p. Nature Genet. (1993) 3:342–345.
  • HILDEBRANDT F, OTTO E, LESCHER B, RENSING C, KISPERT A: Nephrocystin: gene expression and evolutionary conservation between human, mouse and C. elegans. J. Am. Soc. Nephrol. (1999) 10:448A.
  • ORELLANA S, AVNER ED: Cystic maldevelopment of the kidney. Sem. Nephrol (1995) 15:341–352.
  • ARNOULD T, KIM E, TSIOKAS L et al: The polycystic kidney disease 1 gene product mediates protein kinase c-dependent and c-Jun n-terminal kinase-dependent activation of the transcription factor AP-1. J. Biol. Chem. (1998) 273:6013–6018.
  • CALVET JP: Molecular genetics of polycystic kidney disease. J. Nephrol. (1998) 11:24–34.
  • SULLIVAN LP, WALLACE DP, GRANTHAM JJ: Chloride and fluid secretion in polycystic kidney disease. J. Am. Soc. Nephrol. (1998) 9:903–916.
  • TSIOKAS L, KIM E, ARNOULD T, SUKHATME VP, WALZ G: Homo-and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc. Natl. Acad. Sci. USA (1997) 94:6965–6970.
  • DU J, WILSON PD: Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am. J. PhysioL (1995) 269:C487–495.
  • SWEENEY WE, AVNER ED: Functional activity of epidermal growth factor receptors in autosomal recessive polycystic kidney disease. Am. J. Physiol (1998) 44:F387–F394.
  • RICHARDS WG, SWEENEY WE, YODER BK, WILKINSON JE, WOYCHIK RP, AVNER ED: Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J. Clin. Invest. (1998) 101:935–939.
  • •Experimental evidence for the EGFR activity in the progres-sion of cysts in PKD.
  • MIETTINEN PJ, BERGER JE, MENESES J et al: Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature (1995) 376:337–341.
  • DRESSLER G, WOOLF AS: Pax2 in development and renal disease. Int. J. Devel Biol. (1999) 43:463–468.
  • KIM E, ARNOULD T, SELLIN LK et al.: The polycystic kidney disease 1 gene product modulates Wnt signaling. J. Biol. Chem. (1999) 274:4947–4953.
  • PUGH J, SWEENEY WE, AVNER ED: The tyrosine kinase activity of the EGF receptor in murine metanephric organ culture. Kidney Int. (1995) 47:774–781.
  • AVNER ED, SWEENEY WE, WOYCHIK RP: Inhibition of epidermal growth factor receptor activity modulates collecting tubule cystogenesis in vitro. J. Am. Soc. Nephrol. (1995) 6:690.
  • LEVITZKI A: Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB (1992) 6:3275–3282.
  • ARMSTRONG JF, PRITCHARD-JONES K, BICKMORE WA, HASTIE ND, BARD JBL: The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Develop. (1992) 40:85–97.
  • KREIDBERG JA, SARIOLA H, LORING JM et al.: WT-1 is required for early kidney development. Cell (1993) 74:679–691.
  • LEE, SB, HUANG K, PALMER R et al.: The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell (1999) 98:663–673.
  • ••An elegant microarray-based screening for the genesregulated by WT1.
  • SCHMIDT L, DUH FM, CHEN F: Germline and somatic mutations in the tyrosine kinase domain of the Met protooncogene in papillary renal carcinoma. Nature Genet. (1997) 16:68–73.
  • •A straightforward study pointing out the role of Met proto-oncogene in the pathogenesis of renal carcinoma.
  • DUAN DR, PAUSE A, BURGESS WH et al.: Inhibition of transcription elongation by the VHL tumour suppressor. Science (1995) 269:1402–1406.
  • FLEMING S: Renal cancer genetics: von Hippel Lindauand other syndromes. Int. J. Devel. Biol. (1999) 43:469–472.
  • SIEMEISTER G, WINDEL K, MOHRS K, BARLEON B, MARTINY-BYRON G, MARME D: Reversion of deregu-lated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel Lindau tumor suppressor protein. Cancer Res. (1996) 56:2299–2301.
  • GNARRA JR, WARD JM, PORTER FD et al.: Defectiveplacental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc. Nati Acad. Sci. USA (1997) 94:9102–9107.

Websites

  • http://www.ana.ed.ac.uk/anatomy/database/kidbase/kidh ome.html DAVIES JA, BRANDLI AW: The Kidney Development Database'
  • •A very useful Internet database for all who work with nephrogenesis or kidney diseases.
  • http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim? 301050 Alport syndrome.
  • http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim? 256300 Congenital nephrosis.
  • http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim? 174000 Nephronophtisis.
  • http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim? 603860 Nephronophtisis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.