70
Views
15
CrossRef citations to date
0
Altmetric
Review

Soluble guanylate cyclase

Pages 735-749 | Published online: 25 Feb 2005

Bibliography

  • HARDMAN JG, SUTHERLAND EW: Guanyl cyclase, anenzyme catalyzing the formation of g-uanosine 3', 5t-monophosphate from g-uanosine triphosphate. j Biol. Chem. (1969) 244:6363–6370.
  • IGNARRO LJ, BUGA GM, WOOD KS, BYRNS RE, CHAUDHURI G: Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Nati Acad. Sci. USA (1987) 84:9265–9269.
  • PALMER RM, FERRIGE AG, MONCADA S: Nitric oxiderelease accounts for the biological activity of endothelium-derived relaxing factor. Nature (1987) 327:524–526.
  • FURCHGOTT RF: Studies on the relaxation of rabbitaorta by sodium nitrite: the basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is organic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Mechanisms of Vasodilation. Vanhoutte PM (Ed.), Raven Press, New York, USA (1988) 31–36.
  • HIBBS JB, JR., TAINTOR RR, VAVRIN Z, RACHLIN EM:Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. (1988) 157:87–94.
  • LEPOIVRE M, FIESCHI F, COVES J, THELANDER L, FONTECAVE M: Inactivation of ribonucleotide reductase by nitric oxide. Biochem. Biophys. Res. Commun. (1991) 179:442–448.
  • BROWN GC: Reversible binding and inhibition of catalase by nitric oxide. Eur. J. Biochem. (1995) 232:188–191.
  • LIZASOAIN I, MORO MA, KNOWLES RG, DARLEY-USMAR V, MONCADA S: Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose. Biochem. J. (1996) 314 (Pt 3):877–880.
  • BROWN GC: Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. (1995) 369:136–139.
  • HOGG N: Biological chemistry and clinical potential of 5-nitrosothiols. Free Radic. Biol. Med. (2000) 28:1478–1486.
  • RADI R, BECKMAN JS, BUSH KM, FREEMAN BA: Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. (1991) 288:481–487.
  • WOLIN MS, WOOD KS, IGNARRO LJ: Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme and nitrosyl-heme. J. Biol. Chem. (1982) 257:13312–13320.
  • LINCOLN TM, CORNWELL TL, KOMALAVILAS P, BOERTH N: Cyclic GMP-dependent protein kinase in nitric oxide signaling. Methods Enzymol. (1996) 269:149–166.
  • KAUPP UB: Family of cyclic nucleotide gated ion channels. Curr. Opin. Neurobiol (1995) 5:434–442.
  • BEAVO JA, REIFSNYDER DH: Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol. Sci. (1990) 11:150–155.
  • KAMISAKI Y, SAHEKI S, NAKANE M et al: Solubleguanylate cyclase from rat lung exists as a hetero-dimer. J. Biol. Chem. (1986) 261:7236–7241.
  • HUMBERT P, NIROOMAND F, FISCHER G et al: Purifica-tion of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur. Biochem. (1990) 190:273–278.
  • HARTENECK C, WEDEL B, KOESLING D et al.: Molecularcloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett. (1991) 292:217–222.
  • YUEN PS, POTTER LR, GARBERS DL: A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry (1990) 29:10872–10878.
  • GIUILI G, SCHOLL U, BULLE F, GUELLAEN G: Molecularcloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett. (1992) 304:83–88.
  • ZABEL U, WEEGER M, LA M, SCHMIDT HH: Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem. J (1998) 335 (Pt 1):51–57.
  • BUDWORTH J, MEILLERAIS S, CHARLES I, POWELL K: Tissue distribution of the human soluble guanylate cyclases. Biochem. Biophys. Res. Commun. (1999) 263 :696–701.
  • RITTER D, TAYLOR JF, HOFFMANN JW et al.: Alternativesplicing for the alpha1 subunit of soluble guanylate cyclase. Biochem. j (2000) 346 (Pt 3):811–816.
  • RUSSWURM M, BEHRENDS S, HARTENECK C, KOESLING D: Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem. J (1998) 335 (Pt 1) :125–130.
  • BEHRENDS S, HARTENECK C, SCHULTZ G, KOESLING D: A variant of the alpha 2 subunit of soluble guanylyl cyclase contains an insert homologous to a region within adenylyl cyclases and functions as a dominant negative protein.j Biol. Chem. (1995) 270:21109–21113.
  • GUPTA G, AZAM M, YANG L, DANZIGER RS: The beta2 subunit inhibits stimulation of the alpha1/beta1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure. J. Clin. Invest (1997) 100:1488–1492.
  • AZAM M, GUPTA G, CHEN W et al: Genetic mapping of soluble guanylyl cyclase genes: implications for linkage to blood pressure in the Dahl rat. Hypertension (1998) 32:149–154.
  • CHEN L, DAUM G, FISCHER JW et al: LOSS of expression of the beta subunit of soluble guanylyl cyclase prevents nitric oxide-mediated inhibition of DNA synthesis in smooth muscle cells of old rats. Circ. Res. (2000) 86:520–525.
  • BAUERSACHS J, BOULOUMIE A, MULSCH A et al: Vasodi-lator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression and in superoxide anion produc-tion. Cardiovasc. Res. (1998) 37:772–779.
  • KLOSS S, BOULOUMIE A, MULSCH A: Aging and chronic hypertension decrease expression of rat aortic soluble guanylyl cyclase. Hypertension (2000) 35:43–47.
  • RUETTEN H, ZABEL U, LINZ W, SCHMIDT HH: Downregu-lation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats. Circ. Res. (1999) 85:534–541.
  • HUSSAIN MB, HOBBS AJ, MACALLISTER RJ: Autoregula-tion of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta. Br. J. Pharmacol. (1999) 128:1082–1088.
  • IGNARRO LJ, DEGNAN JN, BARICOS WH, KADOWITZ PJ, WOLIN MS: Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim. Biophys. Acta (1982) 718:49–69.
  • WEDEL B, HUMBERT P, HARTENECK C et al: Mutation ofElis-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc. Nati Acad. Sci. USA (1994) 91:2592–2596.
  • FRIEBE A, WEDEL B, HARTENECK C et al.: Functions of conserved cysteines of soluble guanylyl cyclase. Biochemistry (1997) 36:1194–1198.
  • STONE JR, MARLETTA MA: Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry (1994) 33:5636–5640.
  • BURSTYN JN, YU AE, DIERKS EA, HAWKINS BK, DAWSONJH: Studies of the heme coordination and ligand binding properties of soluble guanylyl cyclase (sGC): characterization of Fe (II) s GC and Fe (II) sGC(CO) by electronic absorption and magnetic circular dichroism spectroscopies and failure of CO to activate the enzyme. Biochemistry (1996) 34:5896–5903.
  • BUECHLER WA, NAKANE M, MURAD F: Expression ofsoluble guanylate cyclase activity requires both enzyme subunits. Biochem. Biophys. Res. Commun. (1991) 174:351–357.
  • HARTENECK C, KOESLING D, SOLING A, SCHULTZ G, BOHME E: Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett. (1990) 272:221–223.
  • WILSON EM, CHINKERS M: Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry (1995) 34:4696–4701.
  • STONE JR, SANDS RH, DUNHAM WR, MARLETTA MA: Spectral and ligand-binding properties of an unusual hemoprotein, the ferric form of soluble guanylate cyclase. Biochemistry (1996) 35:3258–3262.
  • DIERKS EA, BURSTYN JN: Nitric oxide (NO), the only nitrogen monoxide redox form capable of activating soluble guanylyl cyclase. Biochem. Pharmacol. (1996) 51:1593–1600.
  • OHLSTEIN EH, WOOD KS, IGNARRO LJ: Purification andproperties of heme-deficient hepatic soluble guanylate cyclase: effects of heme and other factors on enzyme activation by NO, NO-heme and protopor-phyrin IX. Arch. Biochem. Biophys. (1982) 218:187–198.
  • MARKS GS, BRIEN JF, NAKATSU K, MCLAUGHLIN BE: Does carbon monoxide have a physiological function? Trends Pharmacol ScL (1991) 12:185–188.
  • COCEANI F, KELSEY L, SEIDLITZ E et al.: Carbon monoxide formation in the ductus arteriosus in the lamb: implications for the regulation of muscle tone. Br. J. Pharmacol (1997) 1 2 0:599–608.
  • LEINDERS-ZUFALL T, SHEPHERD GM, ZUFALL F: Regula-tion of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide. J. Neurophysiol (1995) 74:1498–1508.
  • CAUDILL TK, RESTA TC, KANAGY NL, WALKER BR: Roleof endothelial carbon monoxide in attenuated vasore-activity following chronic hypoxia. Am. J Physiol (19910 275:R1025–R1030.
  • WERKSTROM V, NY L, PERSSON K, ANDERSSON KE: Carbon monoxide-induced relaxation and distribu-tion of haem oxygenase isoenzymes in the pig urethra and lower oesophagogastric junction. Br. J. Pharmacol. (1997) 1 2 0:312–318.
  • MORLEY D, KEEFER LK: Nitric oxide/nucleophile complexes: a unique class of nitric oxide-based vasodilators. J. Cardiovasc. Pharmacol (1993) 22 (Suppl. 7):S3–S9.
  • SRINIVASAN A, SAAVEDRA JE, BONIFANT CL et al.: Targeting pharmacologic delivery of nitric oxide (NO). Nitric Oxide (2000) 4:181–181.
  • KO FN, WU CC, KUO SC, LEE FY, TENG CM: YC-1, a novel activator of platelet guanylate cyclase. Blood (1994) 84:4226–4233.
  • WU CC, KO FN, KUO SC, LEE FY, TENG CM: YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br. J. Pharmacol. (1995) 116: 1973–1978.
  • MULSCH A, BAUERSACHS J, SCHAFER A et al.: Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br. J Pharmacol. (1997) 120:681–689.
  • FRIEBE A, KOESLING D: Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol. Pharmacol (1998) 53:123–127.
  • LUO D, DAS S, VINCENT SR: Effects of methylene blue and LY83583 on neuronal nitric oxide synthase and NADPH-diaphorase. Eur. J. Pharmacol. (1 99 5) 290:247–251.
  • KUMAGAI Y, MIDORIKAWA K, NAKAI Y et al: Inhibition of nitric oxide formation and superoxide generation during reduction of LY83583 by neuronal nitric oxide synthase. Eur.J. Pharmacol (1998) 360:213–218.
  • KONTOS HA, WEI EP: Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583. Stroke (1993) 24:427–434.
  • GIBSON A, MIRZAZADEH S: N-methylhydroxylamine inhibits and M&B 22948 potentiates relaxations of the mouse anococcygeus to non-adrenergic, non-cholinergic field stimulation and to nitrovasodi-lator drugs. Br. J. Pharmacol. (1989) 96:637–644.
  • GARTHWAITE J, SOUTHAM E, BOULTON CL et al.: Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1 H-[1, 2, 4]oxadiazolo [4, 3-a]quin ox alin-1-on e. Mol. Pharmacol. (1995) 48:184–188.
  • CELLEK S, KASAKOV L, MONCADA S: Inhibition ofnitrergic relaxations by a selective inhibitor of the soluble guanylate cyclase. Br. J Pharmacol. (1996) 118:137–140.
  • MORO MA, RUSSEL RJ, CELLEK S et al: cGMP mediates the vascular and platelet actions of nitric oxide: confirma-tion using an inhibitor of the soluble guanylyl cyclase. Proc. Natl. Acad. ScL USA (1996) 93:1480–1485.
  • WAYMAN CP, MCFADZEAN I, GIBSON A, TUCKER JF: Inhibition by sodium nitroprusside of a calcium store depletion-activated non-selective cation current in smooth muscle cells of the mouse anococcygeus. Br. J Pharmacol. (1996) 11 8 :2001–2008.
  • SCHRAMMEL A, BEHRENDS S, SCHMIDT K, KOESLING D, MAYER B: Characterization of 1H-[1, 2, 4]oxadiazolo [4, 3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol. Pharmacol. (1996) 50:1–5.
  • FEELISCH M, KOTSONIS P, SIEBE J, CLEMENT B, SCHMIDT HH: The soluble guanylyl cyclase inhibitor 1H-[1, 2, 4]ox adiazolo [4, 3, -a] quinox alin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol. Pharmacol. (1999) 56:243–253.
  • MUNZEL T, KURZ S, HEITZER T, HARRISON DG: New insights into mechanisms underlying nitrate tolerance. Am. J. Cardiol. (1996) 77:24C–30C.
  • PARKER JD, PARKER JO: Nitrate therapy for stableangina pectoris. N Engl. J Med. (1998) 338:520–531.
  • ROTHERMUND L, FRIEBE A, PAUL M, KOESLING D, KREUTZ R: Acute blood pressure effects of VC-1-induced activation of soluble g-uanylyl cyclase in normotensive and hypertensive rats. Br. J. Pharmacol. (2000) 130:205–208.
  • COHN JN, ARCHIBALD DG, ZIESCHE S et al.: Effect ofvasodilator therapy on mortality in chronic conges-tive heart failure. Results of a Veterans Administration Cooperative Study. N Engli Med. (1986) 314:1547–1552.
  • QIAN H, NEPLIOUEVA V, SHETTY GA, CHANNON KM, GEORGE SE: Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation (1999) 99:2979–2982.
  • PATEL RP, LEVONEN A, CRAWFORD JH, DARLEY-USMARVM: Mechanisms of the pro-and anti-oxidant actions of nitric oxide in atherosclerosis. Cardiovasc. Res. (2000) 47:465–474.
  • MALEK AM, ALPER SL, IZUMO S: Hemodynamic shearstress and its role in atherosclerosis. JAMA (1999) 282:2035–2042.
  • BOHL KS, WEST JL: Nitric oxide-generating polymersreduce platelet adhesion and smooth muscle cell proliferation [In Process Citation]. Biomaterials (2000) 21:2273–2278.
  • CHANNON KM, QIAN H, GEORGE SE: Nitric oxide synthase in atherosclerosis and vascular injury: insights from experimental gene therapy. Arterioscler. Thromb. Vasc. Biol. (2000) 20:1873–1881.
  • SHEARS LL, KIBBE MR, MURDOCK AD et al.: Efficientinhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. .1 Am. Coll. Surg. (1998) 187:295–306.
  • JANSSENS S, FLAHERTY D, NONG Z et al.: Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation (1998) 97:1274–1281.
  • VARENNE O, PISLARU S, GILLIJNS H et al.: Localadenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation (1998) 98:919–926.
  • KUROSE I, KUBES P, WOLF R et al.: Inhibition of nitricoxide production. Mechanisms of vascular albumin leakage. Circ. Res. (1993) 73:164–171.
  • CHICHE JD, SCHLUTSMEYER SM, BLOCH DB et al.: Aden ovirus-mediatedgenetransferof cGMP-dep en dent protein kin ase increases the sensitivity of cultured vascular smooth muscle cells to the antiproliferative and pro-apoptotic effects of nitric oxide/cGMP. j Biol. Chem. (1998) 273:34263–34271.
  • DUSTING GJ, FENNESSY P, YIN ZL, GUREVICH V: Nitric oxide in atherosclerosis: vascular protector or villain? Clin. Exp. Pharmacol Physiol Suppl. (1998) 25:S34–S41.
  • LUSCHER TF, TANNER FC, DOHI Y: Age, hypertension and hypercholesterolaemia alter endothelium-dependent vascular regulation. Pharmacol. Toxkol. (1992) 70:S32–S39.
  • REES DD, CELLEK S, PALMER RM, MONCADA S: Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem. Biophys. Res. Commun. (1990) 173:541–547.
  • THIEMERMANN C, VANE J: Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur. Pharmacol. (1990) 182:591–595.
  • KILBOURN RG, GROSS SS, JUBRAN A et al.: NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involve-ment of nitric oxide. Proc. Natl. Acad. ScL USA (1990) 87:3629–3632.
  • GOODE HF, HOWDLE PD, WALKER BE, WEBSTER NR: Nitric oxide synthase activity is increased in patients with sepsis syndrome. Clin. ScL (1995) 88:131–133.
  • LASZLO F, WHITTLE BJ, EVANS SM, MONCADA S: Associa-tion of microvascular leakage with induction of nitric oxide synthase: effects of nitric oxide synthase inhibi-tors in various organs. Eur. J. Pharmacol. (1995) 2 83:47–53.
  • MACMICKING JD, NATHAN C, HOM G et al.: Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell (1995) 81:641–650.
  • WU CC, CHEN SJ, SZABO C, THIEMERMANN C, VANE JR: Arninog-uanidine attenuates the delayed circulatory failure and improves survival in rodent models of endotoxic shock. Br] Pharmacol (1995)114:1666–1672.
  • RUETTEN H, SOUTHAN GJ, ABATE A, THIEMERMANN C: Attenuation of endotoxin-induced multiple organ dysfunction by 1-amin o-2-hydroxy-guanidin e, a potent inhibitor of inducible nitric oxide synthase. Br. Pharmacol. (1996) 118:261–270.
  • PETROS A, LAMB G, LEONE A et al.: Effects of a nitricoxide synthase inhibitor in humans with septic shock. Cardiovasc. Res. (1994) 28:34–39.
  • PETROS A, BENNETT D, VALLANCE P: Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet (1991) 338:1557–1558.
  • GROVER R, ZACCARDELLI D, COLICE G et al.: An open-label dose escalation study of the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Grit Care Med. (1999) 27:913–922.
  • HUSSEIN Z, BEERAHEE M, GROVER R et al: Pharmacoki-netics of the nitric oxide synthase inhibitor L-NGmethylarginine hydrochloride in patients with septic shock. Glaxo Wellcome International Septic Shock Study Group. Clin. Pharmacol. Ther. (1999) 65:1–9.
  • NATHAN CF, HIBBS JB, JR.: Role of nitric oxide synthesisin macrophage antimicrobial activity. Curt-. Opin. Immunol. (1991) 3:65–70.
  • CLEMENTI E, BROWN GC, FEELISCH M, MONCADA S: Persistent inhibition of cell respiration by nitric oxide: crucial role of 5-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA (1998) 95:7631–7636.
  • MONCADA S, PALMER RM, HIGGS EA: Nitric oxide:physiology, pathophysiology and pharmacology. Pharmacol. Rev. (1991) 43:109–142.
  • KILBOURN RG, FONSECA GA, TRISSEL LA, GRIFFITH OW:Strategies to reduce side effects of interleukin-2: evaluation of the antihypotensive agent NG-monomethyl-L-arginine. Cancer J. Sci. Am. (2000) 6 (Suppl. 1):S21–S30.
  • KILBOURN RG, FONSECA GA, GRIFFITH OW et al.: NG-methyl-L-arginine, an inhibitor of nitric oxide synthase, reverses interleukin-2-induced hypoten-sion. Grit Care Med. (1995) 23:1018–1024.
  • CAUVVELS A, VAN MOLLE W, JANSSEN B et al.: Protectionagainst TNF-induced lethal shock by soluble g-uanylate cyclase inhibition requires functional inducible nitric oxide synthase. Immunity (2000) 13:223–231.
  • LANDER HM, HADAR DP, HEMPSTEAD BL et al.: A molecular redox switch on p21 (ras). Structural basis for the nitric oxide-p21(ras) interaction. j. Biol. Chem. (1997) 272:4323–4326.
  • MATTHEWS JR, BOTTING CH, PANICO M, MORRIS HR, HAY RT: Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res. (1996) 24:2236–2242.
  • COLASANTI M, PERSICHINI T: Nitric oxide: an inhibitor of NF-kappaB/Rel system in glial cells. Brain Res. Bull. (2000) 52:155–161.
  • GHOSH S, MAY MJ, KOPP EB: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann. Rev. Immunol. (1998) 16:225–260.
  • GUDI T, HUVAR I, MEINECKE M et al.: Regulation of gene expression by cGMP-dependent protein kinase. Transactivation of the c-fos promoter. J Biol. Chem. (1996) 271:4597–4600.
  • GUDI T, HONG GK, VAANDRAGER AB, LOHMANN SM, PILZ RB: Nitric oxide and cGMP regulate gene expres-sion in neuronal and glial cells by activating Type II cGMP-dependent protein kinase. FASEB J. (1999) 13:2143–2152.
  • IDRISS SD, GUDI T, CASTEEL DE et al.: Nitric oxide regulation of gene transcription via soluble g-uanylate cyclase and Type I cGMP-dependent protein kinase. J. Biol. Chem. (1999) 274:9489–9493.
  • GONG JH, RENZ H, SPRENGER H, NAIN M, GEMSA D: Enhancement of tumor necrosis factor-alpha gene expression by low doses of prostaglandin E2 and cyclic GMP. Immunobiology (1990) 182:44–55.
  • TETSUKA T, DAPHNA-IKEN D, MILLER BW et al.: Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin. Invest (1996) 97:2051–2056.
  • INOUE T, FUKUO K, NAKAHASHI T et al.: cGMP upregu-lates nitric oxide synthase expression in vascular smooth muscle cells. Hypertension (1995) 25:711–714.
  • RAVICHANDRAN LV, JOHNS RA: Up-regulation of endothelial nitric oxide synthase expression by cyclic guanosine 3', S'-monophosphate. FEBS Lett. (1995) 374:295–298.
  • POLTE T, ABATE A, DENNERY PA, SCHRODER H: Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler. Thromb. Vasc. Biol. (2000) 20:1209–1215.
  • KIEMER AK, VOLLMAR AM: Au to cr in e regulation of inducible nitric-oxide synthase in macrophages by atrial natriuretic peptide. J. Biol. Chem. (1998) 273:13444–13451.
  • KIEMER AK, VOLLMAR AM: Effects of different natriuretic peptides on nitric oxide synthesis in macrophages. Endocrinology (1997) 138:4282–4290.
  • BAEUERLE PA, HENKEL T: Function and activation of NF-kappa Bin the immune system. Ann. Rev. Immunol. (1994) 12:141–179.
  • TSAO PS, BUITRAGO R, CHAN JR, COOKE JP: Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation (1996) 94:1682–1689.
  • ELLIOTT SN, MCKNIGHT W, CIRINO G, WALLACE JL: A nitric oxide-releasing nonsteroidal anti-inflammatory drug accelerates gastric ulcer healing in rats [see comments]. Gastroenterology (1995) 109:524–530.
  • WALLACE JL, REUTER B, CICALA C et al.: A diclofenac derivative without ulcerogenic properties. Eur. Pharmacol. (1994) 257:249–255.
  • RAND MJ: 1Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin. Exp. Pharmacol. Physiol (1992) 19:147–169.
  • TODA N, OKAMURA T: 1Nitroxidergic nerve: regulation of vascular tone and blood flow in the brain. J Hypertens. (1996) 14:423–434.
  • MELMAN A, GINGELL JC: The epidemiology and pathophysiology of erectile dysfunction./ Uroi. (1999) 161:5–11.
  • CELLEK S, RODRIGO J, LOBOS E et al.: Selective nitrergic neurodegeneration in diabetes melli. Br. J. Pharmacol. (1999) 128:1804–1812.
  • CELLEK S, MONCADA S: IsRtrergic control of peripheral sympathetic responses in the human corpus cavernosum: a comparison with other species. Proc. Nati Acad. Sci. USA (1997) 94:8226–8231.
  • GLOSSMANN H, PETRISCHOR G, BARTSCH G: Molecular mechanisms of the effects of sildenafil (Viagra). Exp. Gerontol. (1999) 34:305–318.
  • KLONER RA, ZUSMAN RM: Cardiovascular effects of sildenafil citrate and recommendations for its use. Am. Cardiol. (1999) 84:11N–17N.
  • GOLDSTEIN I, LUE TF, PADMA-NATHAN H et al.: Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N. Engl. J. Med. (1998) 338:1397–1404.
  • MARMOR MF, KESSLER R: Sildenafil (Viagra) and ophthalmology. Surv. Ophthalmol. (1999) 44:153–162.
  • OHSHIRO K, PURI P: Pathogenesis of infantile hypertrophic pyloric stenosis: recent progress. Pediatr. Surg. Int. (1998) 13:243–252.
  • TOMITA R, TANJOH K, FUJISAKI S, FUKUZAWA M: The role of nitric oxide (NO) in the human pyloric sphincter. Hepatogastroenterology (1999) 46:2999–3003.
  • HUANG PL, DAWSON TM, BREDT DS, SNYDER SH, FISHMAN MC: Targeted disruption of the neuronal nitric oxide synthase gene. Cell (1993) 75:1273–1286.
  • CHUNG E, CURTIS D, CHEN G et al: Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric stenosis.AmJ. Hum. Genet. (1996) 58:363–370.
  • READ SJ, MANNING P, MCNEIL CJ, HUNTER AJ, PARSONS AA: Effects of sumatriptan on nitric oxide and superoxide balance during glyceryl trinitrate infusion in the rat. Implications for antimigraine mechanisms. Brain Res. (1999) 847:1–8.
  • SOUTHAM E, CHARLES SL, GARTHWAITE J: The nitric oxide-cyclic GMP pathway and synaptic plasticity in the rat superior cervical ganglion. Br. J Pharmacol. (1996) 119:527–532.
  • BOULTON CL, SOUTHAM E, GARTHWAITE J: Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience (1995) 69:699–703.
  • LEWIN MR, WALTERS ET: Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nature Neurosci. (1999) 2:18–23.
  • HAEFLIGER IO, DETTMANN E, LIU R et al.: Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Surv. Ophthalmol. (1999) 43 (Suppl. 1):S51–S58.
  • NEUFELD AH: Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv. Ophthalmol (1999) 43 (Suppl. 1):S129–5135.
  • KOSS MC: Functional role of nitric oxide in regulation of ocular blood flow. Eur. J. Pharmacol. (1999) 374:161–174.
  • KAMIKAWATOKO S, TOKORO T, ISHIDA A et al.: Nitric oxide relaxes bovine ciliary muscle contracted by carbachol through elevation of cyclic GMP. Exp. Eye Res. (1998) 66:1–7.
  • NATHANSON JA: rs&trovasodilators as a new class of ocular hypotensive agents. J. Pharmacol. Exp. Ther. (1992) 260:956–965.
  • NATHANSON JA: Direct application of a guanylate cyclase activator lowers intraocular pressure. Eur. Pharmacol. (1988) 147:155–156.
  • HESSEMER V, SCHMIDT KG: Influence of the vasodilator drug isosorbide dinitrate on ocular circulation. Arch. Ophthalmol (1997) 115:324–327.
  • GRUNWALD JE, DUPONT J, DREYER EB: Effect of chronic nitrate treatment on retinal vessel caliber in open-angle glaucoma. Am. J Ophthalmol. (1997) 123:753–758.
  • NEUFELD AH, SAWADA A, BECKER B: Inhibition of nitric-oxide synthase 2 by aminog-uanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc. Nati Acad. Sci. USA (1999) 96:9944–9948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.