41
Views
11
CrossRef citations to date
0
Altmetric
Review

Sec, drugs and rock’n’roll: antibiotic targeting of bacterial protein translocation

Pages 141-153 | Published online: 25 Feb 2005

  • GERSTEIN M, LIN J, HEGYI H: Protein folds in the wormgenome. Pac. Symp. Biocomput. (200030–41.
  • KIHARA D, KANEHISA M: Tandem clusters ofmembrane proteins in complete genome sequences. Genome Res. (2000) 1O(6):731–743.
  • TJALSMA H, BOLHUIS A, JONGBLOED JD, BRON S, VAN DIJL JM: Signal peptide-dependent protein transport in Bacillus subtilis: a gen ome-based survey of the secretome. Microbiol. Mol. Biol. Rev. (2000) 64(3):515–547.
  • DANESE PN, SILHAVY TJ: Targeting and assembly of periplasmic and outer-membrane proteins in Escheri-chia coli. Ann. Rev. Genet. (1998) 32:59–94.
  • POHLSCHRODER M, PRINZ WA, HARTMANN E,BECKWITH J: Protein translocation in the three domains of life: variations on a theme. Cell (1997) 91 (5):563–566.
  • GRIBALDO S, CAMMARANO P: The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. j Mol. Evol. (1998) 47(5):508–516.
  • ECONOMOU A: Bacterial pre-protein translocase, mechanism and conformational dynamics of a proces-sive enzyme. Mol. Microbiol. (1998) 27(3):511–518.
  • ECONOMOU A: Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. (1999) 7 (8):315–320.
  • ECONOMOU A: Bacterial protein translocase: a unique molecular machine with an army of substrates. FEBS Lett. (2000) 476(1-2):18–21.
  • MANTING EH, DRIESSEN AJ: Escherichia coli translo-case: the unravelling of a molecular machine. Mol. Microbiol (2000) 379(2):226–238.
  • STROHL WR (Ed.): Biotechnology of antibiotics. Marcel Dekker, New York, NY (1997).
  • SWANEY SM, AOKI H, GANOZA MC, SHINABARGER DL: The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother. (1998) 42(12):3251–3255.
  • NOVAK R, HENRIQUES B, CHARPENTIER E, NORMARK S, TUOMANEN E: Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature (1999) 399(6736)590–593.
  • BREITHAUPT H: The new antibiotics. Nature Biotech-nology (1999) 17:1165–1169.
  • PERSIDIS A: Antibacterial and antifungal drug discovery. Nat. Biotechnol. (1999) 17(11):1141–1142.
  • HELLINGER WC: Confronting the problem of increasing antibiotic resistance. South Med. J. (2000) 93 (9):842–848.
  • WALSH C: Molecular mechanisms that confer antibac-terial drug resistance. Nature (2000) 406 (6797):775–781.
  • TAN YT, TILLETT DJ, MCKAY IA: Molecular strategies for overcoming antibiotic resistance in bacteria. Mol. Med. Today (2000) 6(8):309–314.
  • DEDECKER BS: Allosteric drugs: thinking outside the active-site box. Chem. Biol. (2000) 7(5):R103–107.
  • ROSAMOND J, ALLSOP A: Harnessing the power of the genome in the search for new antibiotics. Science (2000) 287 (54601973–1976.
  • SEIWERT SD, STINES NAHREINI T, AIGNER S, AHN NG,UHLENBECK OC: RNA aptamers as pathway-specific MAPkinase inhibitors. Chem. Biol. (2000) 7 (10 :833–843.
  • STATHOPOULOS C, HENDRIXSON DR, THANASSI DG et al.: Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect. (2000) 2 (9):1061–1072.
  • STEPHENS C, SHAPIRO L: Bacterial protein secretion - a target for new antibiotics? Chem. Mol. (1997) 4 (9):637–641.
  • OLIVER DB, CABELLI RJ, DOLAN KM, JAROSIK GP: Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc. Natl. Acad. Sci. USA (1990) 87(20:8227–82231.
  • •Identification of the first known inhibitor of SecA.
  • HALEGOUA, S, INOUYE M: Translocation and assembly of outer membrance proteins of Escherichia coli. Selective accumulation of precursors and novel assembly intermediates caused by phenethyl alcohol. Mol. Biol. (1979) 130(0:39–61.
  • SALEH FA, FREER JH: Inhibition of secretion of staphy-lococcal alpha toxin by cerulenin. J. Med. Microbiol. (1984) 18(2):205–216.
  • ALKSNE LE, BURGIO P, HU W et al.: Identification and analysis of bacterial protein secretion inhibitors utilizing a SecA-LacZ reporter fusion system. Antimi-crob. Agents Chemother. (2000) 44(6):1418–1427.
  • •First published HTS effort for Sec pathway inhibitors.
  • PAETZEL M, DALBEY RE, STRYNADKA NC: Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature (1998) 396 (6707):186–190.
  • ••One of the first high resolution structures of essential Secpathway components. Signal peptidase I is the first Sec pathway enzyme to be extensively targeted for antibiotic development. The high resolution data will open new possibilities for lead optimisation.
  • HERSKOVITS AA, BOCHKAREVA ES, BIBI E: New prospects in studying the bacterial signal recognition particle pathway. Mol. Microbiol. (2000) 38 (5):927–939.
  • XU Z, KNAFELS JD, YOSHINO K: Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. (2000) 7(12):1172–1177.
  • LILL R, DOWHAN W, WICKNER W: The ATPase activity of SecA is regulated by acidic phospholipids, SecY and the leader and mature domains of precursor proteins. Cell (1990) 60(2):271–280.
  • SCHIEBEL E, DRIESSEN AJM, HARTL F-U, WICKNER W: DmH± and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell (1991) 64(5): 927–939.
  • ••An elaborate dissection of the energetics of bacterial proteintranslocation that laid the foundation for much of the subsequent work.
  • MANTING EH, VAN DER DOES C, REMIGY H, ENGEL A, DRIESSEN AJ: Se cYEG assembles into a tetramer to form the active protein translocation channel. EMBO (2000) 19(5) :852–861.
  • •In-depth study of the oligomerisation state of bacterial translocase.
  • MEYER TH, MENETRET JF, BREITLING R, MILLER KR, AKEY CW, RAPOPORT TA: The bacterial SecY/E translo-cation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. j Ma Biol. (1999) 285 (4):1789–1800.
  • DUONG F, WICKNER W: Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. (1997) 16 (10):2756–2768.
  • DUONG F, WICKNER W: The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J. (1997) 16(16):4871–4879.
  • SAMUELSON JC, CHEN M, JIANG F et al: YidC mediates membrane protein insertion in bacteria. Nature (2000) 406 (6796):637–641.
  • HARTL FU, LECKER S, SCHIEBEL E, HENDRICK JP, WICKNER W: The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell (1990) 63(2):269–279.
  • ••Seminal paper determining the physical order of bindingaffinities that determines targeting of SecA, SecB and substrates to the translocase.
  • ECONOMOU A, WICKNER W: SecApromotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell (1994) 78 (5):835–843.
  • •First demonstration that SecA undergoes ATP-driven confor-mational cycles into the membrane during protein transloca-tion catalysis.
  • ECONOMOU A, POGLIANO JP, BECKWITH J, OLIVER DB, WICKNER W: SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell (1995) 83(7)1171–1181.
  • CHEN X, XU H, TAI PC: A significant fraction of functional SecA is permanently embedded in the membrane. SecA cycling on and off the membrane is not essential during protein translocation. J Chem. (1996) 271 (47):29698–29706.
  • MCGOVERN K, EHRMANN M, BECKWITH J: Decoding signals for membrane protein assembly using alkaline phosphatase fusions. EMBO J. (1991) 10(102773–2782.
  • MARGOLIN W: Green Fluorescent Protein as a Reporter for Macromolecular Localization in Bacterial Cells. METHODS (2000) 20 (1):62–72.
  • HORNEF MW, ROGGENKAMP A, GEIGER AM, HOGARDT M, JACOBI CA, HEESEMANN J: Triggering the ExoS reg-ulon of pseudomonas aeruginosa: A GFP-reporter analysis of exoenzyme (Exo) S, ExoT and ExoU synthesis. Microb. Pathog. (2000) 2 9 (6):329–343.
  • THOMAS JD, DANIEL RA, ERRINGTON J, ROBINSON C: Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia con Mol. Microbic)]. (2001) 39 (1):47–53.
  • FEILMEIER BJ, ISEMINGER G, SCHROEDER D, WEBBER H,PHILLIPS GJ: Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. Bacteriol. (2000) 182 (14) :4068–4076.
  • •First report of green fluorescent protein as a marker for bacterial Sec-dependent trafficking. After further optimisa-tion, this approach holds high potential for future use in HTS.
  • WU MM, LLOPIS J, ADAMS SR et al.: Studying organellephysiology with fusion protein-targeted avidin and fluorescent biotin conjugates. Methods Enzymol. (2000) 327:546–564.
  • JANDER G, CRONAN JE JR., BECKWITH J:Biotinylation invivo as a sensitive indicator of protein secretion and membrane protein insertion. J. Bacteria (1996) 178 (1 1) 3049–3058.
  • AKIMARU J, MATSUYAMA S, TOKUDA H, MIZUSHIMA S: Reconstitution of a protein translocation system containing purified SecY, SecEand SecA from Escheri-chia coli. Proc. Natl. Acad. Sci. USA (1 9 9 1) 88 (15):6545–6549.
  • ULBRANDT ND, LONDON E, OLIVER DB: Deep penetra-tion of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem. (1992) 267(20:15184–15192.
  • DEN BLAAUWEN T, FEKKES P, DE WIT JG, KUIPER W,DRIESSEN AJ: Domain interactions of the peripheral preprotein Translocase subunit SecA. Biochem. (1996) 35 (37) :11994–12004.
  • BIERI C, ERNST OP, HEYSE S, HOFMANN KP, VOGEL H:Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat. Biotechnol (1999)17 (11):1105–1108.
  • •Powerful implementation of a surface plasmon resonance optical biosensor for the study of binding and release of a protein to its membrane-embedded receptor.
  • KARAMANOU S, VRONTOU E, SIANIDIS G et al.: A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. (1999) 34 (5) :1133–1145.
  • DEN BLAAUWEN T, DE WIT JG, GOSKER H et al.: Inhibi-tion of preprotein translocation and reversion of the membrane inserted state of SecA by a carboxyl terminus binding mAb. Biochem. (1997) 36(309159–9168.
  • SIANIDIS G, KARAMANOU S, VRONTOU E et al.: Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. (2001) EMBO J 20(5):961–970.
  • •The N-domain of SecA is shown to possess essential function DEAD family motifs. The enzymological features of the ATPase cycle are attributed to defined domains of the enzyme.
  • SHIMIZU H, NISHIYAMA K, TOKUDA H: Expression of gpsA encoding biosynthetic sn-glycerol 3-phosphate dehydrogenase suppresses both the LB-phenotype of a secB null mutant and the cold-sensitive phenotype of a secG null mutant. Mol. Microbiol. (1997) 26(5):1013–1021.
  • OTVOS L JR, O I, ROGERS ME, CONSOLVO PJ et al: Interaction between heat shock proteins and antimi-crobial peptides. Biochem. (2000) 39 (46):14150–14159.
  • •Peptide antibiotics acting directly on a chaperone protein are distinct form the peptide antibiotics that disrupt bacterial membranes and may be also applicable to the Sec-system.
  • FEWELL SW, DAY BW, BRODSKY JL: Identification of anInhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J. Biol. Chem. (2001) 276(2):910–914.
  • WALTER P, KEENAN R, SCHMITZ U: SRP-where the RNAand membrane worlds meet. Science (2000) 287 (5456):1212–1213.
  • SHILTON B, SVERGUN DI, VOLKOV W, KOCH MHJ, CUSACK S, ECONOMOU A: Escherichia coli SecA shape and dimensions. FEBS Lett. (1998) 436(2).277–282.
  • VAN RAAIJ MJ, ABRAHAMS JP, LESLIE AG, WALKER JE: Thestructure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc. Natl. Acad. ScL USA (1996) 93(14):6913–6917.
  • WEBER J, SENIOR AE: Effects of the inhibitors azide, dicyclohexylcarbodiimide and aurovertin on nucleo-tide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes. J Chem. (1998) 273(50):33210–33215.
  • TONG L, PAV S, WHITE DM et al: A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol. (1997) 4 (4) :311–316.
  • WALKER JE, SARASTE M, RUNSWICK MJ, GAY NJ: Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleo-tide binding fold. EMBO J (1982) 1 (8):945–951.
  • MCNICHOLAS P, SALAVATI R, OLIVER D: Dual regulation of Escherichia coli secA translation by distinct upstream elements. j Mot. Biol. (1997) 265 (2):128–141.
  • HERBORT M, KLEIN M, MANTING EH, DRIESSEN AJ, FREUDL R: Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. J. Bacteriol. (1999) 181 (2) :493–500.
  • KOONIN EV, GORBALENYA AE: Autogenous translation regulation by Escherichia coli ATPase SecA may be mediated by an intrinsic RNA helicase activity of this protein. FEBS Lett. (1992) 298 (1):6–8.
  • PARK SK, KIM DW, CHOE J, KIM H: RNA helicase activity of Escherichia coliSecA protein. Biochem. Biophys. Res. Commun. (1997) 235(3)593–597.
  • •Demonstration of the RNA helicase activity of SecA, an enzymatic activity that can be targeted.
  • KWONG AD, KIM JL, LIN C: Structure and function of hepatitis C virus NS3 helicase. Curr. Top Microbiol. Immunol. (2000) 242:171–196.
  • YAO N, WEBER PC: Helicase, a target for novel inhibi-tors of hepatitis C virus. Antivir. Ther. (1998) 3 (Suppl. 3) 93–97.
  • DYMOCK BW, JONES PS, WILSON FX: Novel approaches to the treatment of hepatitis C virus infection. Antivir. Chem. Chemother. (2000) 11 (2) :79–96.
  • BOROWSKI P, KUEHL R, MUELLER O, HWANG LH, SCHULZE ZUR WIESCH J, SCHMITZ H: Biochemical properties of a minimal functional domain with ATP-binding activity of the NTPase/helicase of hepatitis C virus. Eur.j Biochem. (1999) 266 (3) :715–723.
  • DEAN DA: Peptide nucleic acids: versatile tools forgene therapy strategies. Adv. Drug Deliv. Rev. (2000) 44 (2-3) :81–95.
  • BASTIDE L, BOEHMER PE, VILLANI G, LEBLEU B: Inhibi-tion of a DNA-helicase by peptide nucleic acids. Nucleic Acids Res. (1999) 27(2):551–554.
  • GOOD L, NIELSEN PE: Antisense inhibition of geneexpression in bacteria by PNA targeted to mRNA. Nat. Biotechnol. (1998) 1 6 (4) :355–358.
  • GOOD L, SANDBERG R, LARSSON O, NIELSEN PE, WAHLESTEDT C: Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology (2000) 1 46 (10) :2665–2670.
  • MCCAFFERTY DG, CUDIC P, YU MK, BEHENNA DC, KRUGER R: Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol. (1999) 3 (6) :672–680.
  • MILLER A, WANG L, KENDALL DA: Synthetic signalpeptides specifically recognize SecA and stimulate ATPase activity in the absence of preprotein. J Chem. (1998) 273(19):11409–11412.
  • •Demonstaration of functional signal peptide binding on SecA in the absence of any other auxhilliary factors.
  • KIMURA E, AKITA M, MATSUYAMA S, MIZUSHIMA S: Determination of a region in SecA that interacts with presecretory proteins in Escherichia con J. Biol. Chem. (1991) 266(106600–6606.
  • DRIESSEN AJ: SecA, the peripheral subunit of theEscherichia coli precursor protein translocase, is functional as a dimer. Biochem. (1993) 32 (48):13190–13197.
  • HIRANO M, MATSUYAMA S, TOKUDA H: The carboxyl-terminal region is essential for Sec-A dimerization. Biochem. Biophys. Res. Commun. (1996) 229(0:90–95.
  • MCMILLAN K, ADLER M, AULD DS et al: Allosteric inhibi-tors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. Proc. Natl. Acad. ScL USA (2000) 97 (4) :1506–1511.
  • GHOSH I, ISSAC R, CHMIELEWSKI J: Structure-function relationship in a beta-sheet peptide inhibitor of E47 dimerization and DNA binding. Bioorg. Med. Chem. (1999) 7(0:61–66.
  • ZUTSHI R, CHMIELEWSKI J: Targeting the dimerization interface for irreversible inhibition of HIV-1 protease. Bioorg. Med. Chem. Lett. (2000) 1 0 (17):1901–1903.
  • ELKIN CD, ZUCCOLA H, JOGLE JM, JOSEPH-MCCARTHY D: Computational design of D-peptide inhibitors of hepatitis delta antigen dimerization. j Comput. Aided Mol. Des. (2000) 14(8):705–718.
  • COCHRAN AG: Antagonists of protein-protein interac-tions. Chem. Biol. (2000) 7(4):R85–94.
  • ZUTSHI R, BRICKNER M, CHMIELEWSKI J: Inhibiting theassembly of protein-protein interfaces. Curr. Opin. Chem. Biol. (1998) 2(0:62–66.
  • NORMAN TC, SMITH DL, SORGER PK et al.: Geneticselection of peptide inhibitors of biological pathways. Science (1999) 285 (5427):591–595.
  • STIGERS KD, SOTH MJ, NOWICK JS: Designed moleculesthat fold to mimic protein secondary structures. Curr. Opin. Chem. Biol. (1999) 3(6):714–23.
  • WAY JC: Covalent modification as a strategy to blockprotein-protein interactions with small-molecule drugs. Curr. Opin. Chem. Biol. (2000) 4(0:40–46.
  • JOHNSON AE, VAN WAES MA: The translocon: a dynamic gateway at the ER membrane. Ann. Rev. Cell Dev. Biol. (1999) 15:799–842.
  • FLOWER AM, HINES LL, PFENNIG PL: SecGis an auxiliarycomponent of the protein export apparatus of Escherichia coli. Mol. Gen. Genet. (2000) 263 (0:131–136.
  • SUZUKI H, NISHIYAMA K, TOKUDA H: Coupled structure changes of SecA and SecG revealed by the synthetic lethality of the secAcsR11 and AsecG::kan double mutant. Mol. Mkrobiol. (1998) 29 (1):331–341.
  • POGLIANO JA, BECKWITH J: SecD and SecF facilitateprotein export in Escherichia con EMBO J. (1994) 13 (3):554–561.
  • MATSUYAMA S, FUJITA Y, MIZUSHIMA S: SecD isinvolved in the release of translocated secretory proteins from the cytoplasmic membrane of Escheri-chia coli. EMBO J (1993) 12(1):265–270.
  • •Demonstration that the periplasmic SecD domains are essential for translcoase function.
  • DEV IK, HARVEY RJ, RAY PH: Inhibition of prolipopro-tein signal peptidase by globomycin. J. Biol. Chem. (1985) 260(10):5891–5894.
  • BLACK MT, BRUTON G: Inhibitors of bacterial signalpeptidases. Curr. Pharm. Des. (1998) 4(2):133–154.
  • PAETZEL M, DALBEY RE, STRYNADKA NC: The structureand mechanism of bacterial Type I signal peptidases. A novel antibiotic target. Pharmacol. Ther. (2000) 87 (1):27–49.
  • SALAVATI R, OLIVER D: Identification of elements on Gen eX-se cA RNA of Escherichia coli r equir ed for SecA binding and secA auto-regulation. j Mol. Biol. (1997) 265 (2):142–152.
  • MITCHELL C, OLIVER D: Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol Microbiol (1993) 10 (3):483–497.
  • BREUKINK E, DEMEL RA, DE KORTE-KOOL G, DE KRUIJFF B: SecA insertion into phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochem. (1992) 31 (4) :1119–1124.
  • BOCHKAREVA ES, SOLOVIEVA ME, GIRSHOVICH AS: Targeting of GroEL to SecA on the cytoplasmic membrane of Escherichia coil Proc. Natl. Acad. ScL USA (1998) 95 (2):478–483.
  • MULLER JP, OZEGOWSKI J, VETTERMANN S, SWAVING J, VAN WELY KH, DRIESSENInteraction of Bacillussubtilis CsaA with SecA and precursor proteins. Biochem. j (2000) 348 (2) :367–73.
  • SCOTTI PA, URBANUS ML, BRUNNER J et al: YidC, the Escherichia coll'homolog-ue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO (2000) 19 (4):542–549.
  • http://wit.integratedgenomics.com/IGwitl Kyrpides NC, Integrated Genomics, Inc.: GOLD: Genomes on-line database. (2001).
  • www.ribotargets.com/science/ribodock_body.html Ribotargets Ltd: Research programmes and technology. (2001).
  • www.vpharm.com/NonEnhanced/AntiviralNonE.html Vertex Pharmaceuticals, Inc.: Products and Programs. (2001).
  • www.schering-plough.com/news/research/ 191999/10-28-99. html Schering-Plough, Inc.: Research news. (1999).
  • www.roche-discovery.co.uk/science/hcv.html Roche Discovery Welwyn: Science-Virology. (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.