140
Views
13
CrossRef citations to date
0
Altmetric
Miscellaneous

Novel G-protein-coupled receptor genes expressed in the brain: continued discovery of important therapeutic targets

, &
Pages 185-202 | Published online: 25 Feb 2005

Bibliography

  • LEFKOWITZ RJ: The superfamily of heptahelical receptors. Nat. Cell Biol. (2000) 2:E133–E136.
  • MARCHESE A, GEORGE SR, O'DOWD BF: Cloning of G-protein-coupled receptor genes: the use of homology screening and the polymerase chain reaction. In: Identification and Expression of C-Protein-Coupled Receptors. Lynch KR (Ed), Wiley-Liss, Inc., (1998):1–26.
  • BOCKAERT J, PIN JP: Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. (1999) 18:1723–1729.
  • LEE DK, GEORGE SR, EVANS JF, LYNCH KR, O'DOWD BF: Orphan G protein-coupled receptors in the CNS. Curr. Opin. Pharmacol (2001) 1:31–39.
  • LEE DK, LYNCH KR, NGUYEN T et al.: Cloning and characterization of additional members of the G-protein-coupled receptor family. Biochim. Biophys. Acta (2000) 1490:311–323.
  • LEE DK, GEORGE SR, CHENG R etal.:Identification of four novel human G protein-coupled receptors expressed in the brain. Brain Res. Ma Brain Res. (2001) 86:13–22.
  • LEE DK, NGUYEN T, LYNCH KR et al:Discovery and mapping of ten novel G-protein-coupled receptor genes. Gene (2001) 275:83–91.
  • •A recent report detailing the identification of numerous oGPCRs using in silk° database search methods.
  • CIVELLI O, NOTHACKER HP SAITO Y et al.: Novel neurotransmitters as natural ligands of orphan G-protein-coupled receptors. Trends Neurosci. (2001) 24:230–237.
  • SAKURAI T, AMEMIYA A, ISHII M et al.:Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell (1998) 92:573–585.
  • BAILEY WJ, VANTI WB, GEORGE SR et al.: Patent status of the therapeutically important G-protein-coupled receptors. Expert Opin. Ther. Patents (2001) 11:1861–1887.
  • •A comprehensive review describing another database of oGPCRs, the patent literature.
  • O'DOWD BF, HEIBER M, CHAN A et al.: A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene (1993) 136:355–360.
  • TATEMOTO K, HOSOYA M, HABATA Y etal.: Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. (1998) 251:471–476.
  • LEE DK, CHENG R, NGUYEN T et al:Characterization of apelin, the ligand for the APJ receptor. J. Neurochem. (2000) 74:34–41.
  • REAUX A, DE MOTA N, SKULTETYOVA I et al.: Physiological role of a novel neuropeptide, apelin and its receptor in the rat brain. J. Neurochem. (2001) 77:1085–1096.
  • •This report offers evidence of interaction between the apelin and vasopressin systems, providing a possible pathway for apelin modulation of water consumption.
  • O'CARROLL AM, SELBY TL, PALKOVITS M, LOLAIT SJ: Distribution of mRNA encoding B78/APJ, the rat homologue of the human APJ receptor and its endogenous ligand apelin in brain and peripheral tissues. Biochim. Biophys. Acta (2000) 1492:72–80.
  • DE MOTA N, LENKEI Z, LLORENS-CORTES C: Cloning, pharmacological characterization and brain distribution of the rat apelin receptor. Neuroencloccino/ogy (2000) 72:400–407.
  • HABATA Y, FUJII R, HOSOYA M et al: Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta (1999) 1452:25–35.
  • HOSOYA M, KAWAMATA Y, FUKUSUMI S et al.: Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. j Biol. Chem. (2000) 275:21061–21067.
  • KAWAMATA Y, HABATA Y, FUKUSUMI S et al.: Molecular properties of apelin: tissue distribution and receptor binding. Biochim. Biophys. Acta (2001) 153:162–171.
  • TATEMOTO K, TAKAYAMA K, ZOU MX et al.: The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept (2001) 99:87–92.
  • ARNAL JF, DINH-XUAN AT, PUEYO M, DARBLADE B, RAMI J: Endothelium-derived nitric oxide and vascular physiology and pathology. Cell. Mol. Life Sci. (1999) 55:1078–1087.
  • DOMS RW: Beyond receptor expression: the influence of receptor conformation, density and affinity in HIV-1 infection. Virology (2000) 276:229–237.
  • CHOE H, FARZAN M, KONKEL M et al.: The orphan seven-transmembrane receptor APJ supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus Type 1. _J. Viral. (1998) 72:6113–6118.
  • EDINGER AL, HOFFMAN TL, SHARRON M et al.: An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus Type 1 and simian immunodeficiency virus. J. Viral. (1998) 72:7934–7940.
  • ZHANG YJ, DRAGIC T, CAO Y et al: Use of coreceptors other than CCR5 by non-syncytium-inducing adult and pediatric isolates of human immunodeficiency virus Type 1 is rare in vitro. J. Viral. (1998) 72:9337–9344.
  • CAYABYAB M, HINUMA S, FARZAN M et al.: Apelin, the natural ligand of the orphan seven-transmembrane receptor APJ, inhibits human immunodeficiency virus Type 1 entry. J. Viral. (2000) 74:11972–11976.
  • PUFFER BA, SHARRON M, COUGHLAN CM etal.: Expression and coreceptor function of APJ for primate immunodeficiency viruses. Virology (2000) 276:435–444.
  • ZOU MX, LIU HY, HARAGUCHI Y et Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett. (2000) 473:15–18.
  • CHOE W, ALBRIGHT A, SULCOVE J et al.: Functional expression of the seven-transmembrane HIV-1 co-receptor APJ in neural cells. J. Neurovirol (2000) 6\(Supp1.1):561–69.
  • KOLSON DL, LAVI E, GONZALEZ-SCARANO F: The effects of human immunodeficiency virus in the central nervous system. Adv. Virus Res. (1998) 50:1–47.
  • KOLAKOWSKI LF JR, JUNG BP, NGUYEN T et al.: Characterization of a human gene related to genes encoding somatostatin receptors. FEBS Lett. (1996) 398:253–258.
  • BACHNER D, KREIENKAMP HJ, WEISE C, BUCK F, RICHTER D: Identification of melanin concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett. (1999) 457:522–524.
  • SAITO Y, NOTHACKER HP, WANG Z et al.: Molecular characterization of the melanin-concentrating-hormone receptor. Nature (1999) 400:265–269.
  • SHIMOMURA Y, MORI M, SUGO T et al.: Isolation and identification of melanin-concentrating hormone as the endogenous ligand of the SLC-1 receptor. Biochem. Biophys. Res. Commun. (1999) 261:622–626.
  • CHAMBERS J, AMES RS, BERGSMA D et al.: Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature (1999) 400:261–265.
  • LEMBO PM, GRAZZINI E, CAO J et al: The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat. Cell Biol (1999) 1:267–271.
  • KAWAUCHI H, KAWAZOE I, TSUBOKAWA M, KISHIDA M, BAKER BI: Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature (1983) 305:321–323.
  • MACDONALD D, MURGOLO N, ZHANG R et al: Molecular characterization of the melanin-concentrating hormone/receptor complex: identification of critical residues involved in binding and activation. Mol. Pharmacol (2000) 58:217–225.
  • PROBST WC, SNYDER LA, SCHUSTER DI, BROSIUS J, SEALFON SC: Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. (1992) 11:1–20.
  • STRADER CD, SIGAL IS, REGISTER RB et al.: Identification of residues required for ligand binding to the beta-adrenergic receptor. Proc. Nati Acad. Sci USA (1987) 84:4384–4388.
  • STRNAD J, HADCOCK JR: Identification of a critical aspartate residue in transmembrane domain three necessary for the binding of somatostatin to the somatostatin receptor SSTR2. Biochem. Biophys. Res. Commun. (1995) 216:913–921.
  • NEHRING RB, MEYERHOF W, RICHTER D: Aspartic acid residue 124 in the third transmembrane domain of the somatostatin receptor subtype 3 is essential for somatostatin-14 binding. DNA Cell Biol. (1995) 14:939–944.
  • HAWES BE, KIL E, GREEN B et al: The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinology (2000) 141:4524–4532.
  • ROSSI M, CHOI SJ, O'SHEA D et al: Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology (1997) 138:351–355.
  • SHIMADA M, TRITOS NA, LOWELL BB, FLIER JS, MARATOS-FLIER E: Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature (1998) 396:670–674.
  • SAHU A: Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology (1998) 139:795–798.
  • SAHU A: Leptin decreases food intake induced by melanin-concentrating hormone (MCH), galanin (GAL) and neuropeptide Y (NPY) in the rat. Endocrinology (1998) 139:4739–4742.
  • KENNEDY AR, TODD JF, STANLEY SA et al.: Melanin-concentrating hormone (MCH) suppresses thyroid stimulating hormone (TSH) release, in vivo and in vitro, via the hypothalamus and the pituitary. Endocrinology (2001) 142:3265–3268.
  • TSUKAMURA H, THOMPSON RC, TSUKAHARA S et al.: Intracerebroventricular administration of melanin-concentrating hormone suppresses pulsatile luteinizing hormone release in the female rat. j. Neuroendocrinol. (2000) 12:529–534.
  • GAO XB, VAN DEN POL AN: Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. I Physiol. (2001) 533:237–252.
  • AN S, CUTLER G, ZHAO JJ etal.: Identification and characterization of a melanin-concentrating hormone receptor. Proc. Natl. Acad. Sri. USA (2001) 98:7576–7581.
  • RODRIGUEZ M, BEAU VERGER P, NAIME I et al.: Cloning and molecular characterization of the novel human melanin-concentrating hormone receptor MCH2. Mol. Pharmacol. (2001) 60:632–639.
  • MORI M, HARADA M, TERAO Y etal.:Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor. Biochem. Biophys. Res. Commun. (2001) 283:1013–1018.
  • SAILER AW, SANO H, ZENG Z et al: Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc. Natl. Acad. Sri. USA (2001) 98:7564–7569.
  • WANG S, BEHAN J, O'NEILL K etal.: Identification and pharmacological characterization of a novel human melanin-concentrating hormone receptor, MCH-R2. j Biol. Chem. (2001) 276:34664–34670.
  • HILL J, DUCKWORTH M, MURDOCK P et al: Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. j Biol. Chem. (2001) 276:20125–20129.
  • MARCHESE A, HEIBER M, NGUYEN T et al.: Cloning and chromosomal mapping of three novel genes, GPR9, GPR10 and GPR14, encoding receptors related to interleukin 8, neuropeptide Y and somatostatin receptors. Genomics (1995) 29:335–344.
  • NOTHACKER HP, WANG Z, MCNEILL AM et al.: Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction. Nat. Cell Biol. (1999) 1:383–385.
  • LIU Q, PONG SS, ZENG Z et al: Identification of urotensin II as the endogenous ligand for the orphan G-protein-coupled receptor GPR14. Biochem. Biophys. Res. Commun. (1999) 266:174–178.
  • AMES RS, SARAU HM, CHAMBERS JK et al.: Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature (1999) 401:282–286.
  • MORI M, SUGO T, ABE M et al: Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem. Biophys. Res. Commun. (1999) 265:123–129.
  • DOUGLAS SA, OHLSTEIN EH: Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease. Trends Cardiovasc. Med. (2000) 10:229–237.
  • GARTLON J, PARKER F, HARRISON DC et al: Central effects of urotensin-II following ICV administration in rats. Psychopharmacology (Berl) (2001) 155:426–433.
  • BOTTRILL FE, DOUGLAS SA, HILEY CR, WHITE R: Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. Br .j Pharmacol (2000) 130:1865–1870.
  • KATANO Y, ISHIHATA A, AITA T,OGAKI T, HORIE T: Vasodilator effect of urotensin II, one of the most potent vasoconstricting factors, on rat coronary arteries. Eur j Pharmacol (2000) 402:209–211.
  • O'DOWD BE SCHEIDELER MA,NGUYEN T etal.: The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Cenomics (1995) 28:84–91.
  • LEE DK, NGUYEN T, PORTER CA et al:Two related G protein-coupled receptors: the distribution of GPR7 in rat brain and the absence of GPR8 in rodents. Brain Res. Mol Brain Res. (1999) 71:96–103.
  • MATSUMOTO M, KAMOHARA M, SUGIMOTO T et al: The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene (2000) 248:183–189.
  • LEE DK, NGUYEN T, O'NEILL GP et al:Discovery of a receptor related to the galanin receptors. FEBS Lett. (1999) 446:103–107.
  • MUIR Al, CHAMBERLAIN L, ELSHOURBAGY NA et al: AX0R12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. _J. Biol. Chem. (2001) 276:28969–28975.
  • CLEMENTS MK, MCDONALD TI WANG R et al: FMRFamide-related neuropeptides are agonists of the orphan G-protein-coupled receptor GPR54. Biochem. Biophys. Res. Commun. (2001) 284:1189–1193.
  • KOTANI M, DETHEUX M, VANDENBOGAERDE A et al: The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. Biol. Chem. (2001) 276:34631–34636.
  • OHTAKI T, SHINTANI Y, HONDAS et al.: Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature (2001) 411:613–617.
  • •In addition to discovering metastin/ kisspeptin as the endogenous ligand for the GPR54 receptor, this report provides evidence that metastin/kisspeptin inhibits metastasis through in vitro and in vivo assays and suggests some human cancers are deficient in metastin/kisspeptin.
  • LEE JH, MIELE ME, HICKS DJ et al: KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. (1996) 88:1731–1737.
  • HORI A, HONDAS, ASADA M et al: Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem. Biophys. Res. Commun. (2001) 286:958–963.
  • HINUMA S, HABATA Y, FUJII R etal.: A prolactin-releasing peptide in the brain. Nature (1998) 393:272–276.
  • JARRY H, HEUER H, SCHOMBURG L, BAUER K: Prolactin-releasing peptides do not stimulate prolactin release in vivo. Neuroendocrinology (2000) 71:262–267.
  • MATSUMOTO H, NOGUCHI J, HORIKOSHI Y et al.: Stimulation of prolactin release by prolactin-releasing peptide in rats. Biochem. Biophy.s Res. Commun. (1999) 259:321–324.
  • MARUYAMA M, MATSUMOTO H, FUJIWARA K et al: Central administration of prolactin-releasing peptide stimulates oxytocin release in rats. NeuroscL Lett. (1999) 276:193–196.
  • SEAL LJ, SMALL CJ, KIM MS et al: Prolactin releasing peptide (PrRP) stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) via a hypothalamic mechanism in male rats. Endocrinology (2000) 141:1909–1912.
  • MATSUMOTO H, MARUYAMA M, NOGUCHI J et al.: Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci. Lett. (2000) 285:234–238.
  • MARUYAMA M, MATSUMOTO H, FUJI WARA K et al: Prolactin-releasing peptide as a novel stress mediator in the central nervous system. Endocrinology (2001) 142:2032–2038.
  • •This report provides evidence that the PrRP system mediates CNS response to stress.
  • IIJIMA N, MATSUMOTO Y, YANO T et al: A novel function of prolactin-releasing peptide in the control of growth hormone via secretion of somatostatin from the hypothalamus. Endocrinology (2001) 142:3239–3243.
  • CHEN CT, DUN SL, DUN NJ, CHANG JK: Prolactin-releasing peptide-immunoreactivity in Al and A2 noradrenergic neurons of the rat medulla. Brain Res. (1999) 822:276–279.
  • EVERITT BJ, HOKFELT T, TERENIUS L et al.: Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience (1984) 11:443–462.
  • LAWRENCE CB, CELSI F, BRENNAND J, LUCKMAN SM: Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. (2000) 3:645–646.
  • KOTANI M, MOLLEREAU C, DETHEUX M et al.: Functional characterization of a human receptor for neuropeptide FF and related peptides. Br Pharmacol. (2001) 133:138–144.
  • ELSHOURBAGY NA, AMES RS, FITZGERALD LR et al.: Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. j Biol. Chem. (2000) 275:25965–25971.
  • BONINI JA, JONES KA, ADHAM N et al: Identification and characterization of two G protein-coupled receptors for neuropeptide FF. j Biol. Chem. (2000) 275:39324–39331.
  • HINUMA S, SHINTANI Y, FUKUSUMI S etal.: New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. (2000) 2:703–708.
  • LIU Q, GUAN XM, MARTIN WJ et al:Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. j Biol. Chem. (2001) 276:36961–36969.
  • ROUMY M, ZAJAC JM: Neuropeptide FF,pain and analgesia. Eur I Pharmacol (1998) 345:1–11.
  • PANULA P, AARNISALO AA, WASOWICZ K: Neuropeptide FF, a mammalian neuropeptide with multiple functions. Frog. Neurobiol. (1996) 48:461–487.
  • MAZARGUIL H, GOUARDERES C, TAFANI JM etal.: Structure-activity relationships of neuropeptide FF: role of C-terminal regions. Peptides (2001) 22:1471–1478.
  • FRANCES B, LAHLOU H, ZAJAC JM: Cholera and pertussis toxins inhibit differently hypothermic and anti-opioid effects of neuropeptide FF. Regul. PepL (2001) 98:13–18.
  • ROUMY M, ZAJAC JM: Neuropeptide FFreceptors couple to a cholera toxin-sensitive G-protein in rat dorsal raphe neurones. Eur. Pharmacol. (2001) 417:45–49.
  • SUNTER D, HEWSON AK, LYNAM S, DICKSON SL: Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neurosci. Lett. (2001) 313:145–148.
  • ALTIER N, DRAY A, MENARD D, HENRY JL: Neuropeptide FF attenuates allodynia in models of chronic inflammation and neuropathy following intrathecal or intracerebroventricular administration. Eur. j Pharmacol. (2000) 407:245–255.
  • FUKUSUMI S, HABATA Y, YOSHIDA Het al.: Characteristics and distribution of endogenous RFamide-related peptide-1. Biochim. Biophys. Acta (2001) 1540:221–232.
  • UKENA K, TSUTSUI K: Distribution of novel RFamide-related peptide-like immunoreactivity in the mouse central nervous system. Neurosci. Lett. (2001) 300:153–156.
  • MINAMINO N, KANGAWA K, MATSUO H: Neuromedin U-8 and U-25: novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem. Biophys. Res. Commun. (1985) 130:1078–1085.
  • HOWARD AD, WANG R, PONG SS et al.: Identification of receptors for neuromedin U and its role in feeding. Nature (2000) 406:70–74.
  • RADDATZ R, WILSON AE, ARTYMYSHYN R etal.: Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system. J. Biol. Chem. (2000) 275:32452–32459.
  • HEDRICK JA, MORSE K, SHAN L et al.: Identification of a human gastrointestinal tract and immune system receptor for the peptide neuromedin U. Mol. Pharmacol. (2000) 58:870–875.
  • SZEKERES PG, MUIR AI, SPINAGE LD et al.: Neuromedin U is a potent agonist at the orphan G protein-coupled receptor FM3. J. Biol. Chem. (2000) 275:20247–20250.
  • FUJII R, HOSOYA M, FUKUSUMI S et al.: Identification of neuromedin U as the cognate ligand of the orphan G proteincoupled receptor FM-3. J. Biol. Chem. (2000) 275:21068–21074.
  • KOJIMA M, HARUNO R, NAKAZATO M et al.: Purification and identification of neuromedin U as an endogenous ligand for an orphan receptor GPR66 (FM3). Biochem. Biophys. Res. Commun. (2000) 276:435–438.
  • SHAN L, QIAO X, CRONA JH etal.: Identification of a novel neuromedin U receptor subtype expressed in the central nervous system. I Biol. Chem. (2000) 275:39482–39486.
  • HOSOYA M, MORIYA T, KAWAMATA Y et al.: Identification and functional characterization of a novel subtype of neuromedin U receptor. j Biol. Chem. (2000) 275:29528–29532.
  • KOJIMA M, HOSODA H, MATSUO H, KANGAWA K: Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol. Metall. (2001) 12:118–122.
  • KOJIMA M, HOSODA H, DATE Y et Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature (1999) 402:656–660.
  • GUAN XM, YU H, PALYHA OC et al.: Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Ma. Brain Res. (1997) 48:23–29.
  • HOWARD AD, FEIGHNER SD, CULLY DF etal.: A receptor in pituitary and hypothalamus that functions in growth hormone release. Science (1996) 273:974–977.
  • SHUTO Y, SHIBASAKI T, WADA K et al.: Generation of polyclonal antiserum against the growth hormone secretagogue receptor (GHS-R): evidence that the GHS-R exists in the hypothalamus, pituitary and stomach of rats. Life Sci. (2001) 68:991–996.
  • ARVAT E, DI VITO L, BROGLIO F etal.: Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. j Endocrinol. Invest. (2000) 23:493–495.
  • TAKAYA K, ARIYASU H, KANAMOTO N et al.: Ghrelin strongly stimulates growth hormone release in humans. j Chia. Endocrinol. Metab. (2000) 85:4908–4911.
  • DATE Y, NAKAZATO M, MURAKAMI N et al.: Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem. Biophys. Res. Commun. (2001) 280:904–907.
  • KAMEGAI J, TAMURA H, SHIMIZU T et al.: Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology (2000) 141:4797–4800.
  • SHINTANI M, OGAWA Y, EBIHARA K et al.: Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes (2001) 50:227–232.
  • NAKAZATO M, MURAKAMI N, DATE Y et al.: A role for ghrelin in the central regulation of feeding. Nature (2001) 409:194–198.
  • FREMONT RT, GAINETDINOV RR, CARON MG: Following the trace of elusive amines. Proc. Natl. Acad. Sri. USA (2001) 98:9474–9475.
  • BOROWSKY B, ADHAM N, JONES KA et al.: Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Nati Acad. Sci. USA (2001) 98:8966–8971.
  • BUNZOW JR, SONDERS MS, ARTTAMANGKUL S etal.: Amphetamine, 3, 4-methylenedioxyme-thamphetamine, lysergic Acid diethylamide and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Md. Pharmacol. (2001) 60:1181–1188.
  • •This report provides evidence that the trace amine system may play a role in the detection and signal transduction of catacholamine metabolites.
  • HO BY, KARS CHIN A, RAYMOND JR et al.: Expression in animal cells of the 5-HT1A receptor by a vaccinia virus vectorsystem. FEBS Lett. (1992) 301:303–306.
  • LIAPAKIS G, BALLESTEROS JA, PAPACHRISTOU S et al: The forgotten serine. A critical role for Ser-2035.42 in ligans binding to and activation of the beta 2-adrenergic receptor. j Biol. Chem. (2000) 275:37779–37788.
  • ZENG Z, FAN P, RAND E et al: Cloning of a putative human neurotransmitter receptor expressed in skeletal muscle and brain. Biochem. Biophys. Res. Commun. (1998) 242:575–578.
  • HOLLOPETER G, JANTZEN HM, VINCENT D etal.: Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature (2001) 409:202–207.
  • JARMIN DI, RITS M, BOTA D et al: Cutting edge: Identification of the orphan receptor G-protein-coupled receptor 2 as CCR10, a specific receptor for the chemokine ESkine. j Immunol (2000) 164:3460–3464.
  • HEISE CE, O'DOWD BE FIGUEROA DJ etal.: Characterization of the human cysteinyl leukotriene 2 receptor. Biol. Chem. (2000) 275:30531–30536.
  • LYNCH KR, O'NEILL GP, LIU Q etal.: Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature (1999) 399:789–793.
  • LYNCH KR, IM DS: Life on the edge. Trends Pharmacol Sci. (1999) 20:473–475.
  • KABAROWSKI JH, ZHU K, LE LQ, WITTE ON, XU Y: Lysophosphatidy-lcholine as a ligand for the immuno-regulatory receptor G2A. Science (2001) 293:702–705.
  • SCHWEICKART VL, EPP A, RAPORT CJ, GRAY PW: CCR11 is a functional receptor for the monocyte chemoattractant protein family of chemokines. j Biol. Chem. (2000) 275:9550–9556.
  • FEIGHNER SD, TAN CP, MCKEE KK et al.: Receptor for motilin identified in the human gastrointestinal system. Science (1999) 284:2184–2188.
  • LIN L, FARACO J, LI R etal.: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell (1999) 98:365–376.
  • CHEMELLI RIVI, WILLIE JT, SINTON CM et al.: Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell (1999) 98:437–451.
  • IM DS, HEISE CE, NGUYEN T, O'DOWD BF, LYNCH KR: Identification of a molecular target of psychosine and its role in globoid cell formation. j Cell Biol. (2001) 153:429–434.
  • YOSHIDA T, IMAI T, KAKIZAKI M et al: Identification of single C motif-1/ lymphotactin receptor XCR1. j Biol. Chem. (1998) 273:16551–16554.
  • XU Y, ZHU K, HONG G et al: Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat. Cell Biol. (2000) 2:261–267.

Website

  • www.ncbi.nlm.nih.goviEntrez GenBank retrieval database.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.