409
Views
41
CrossRef citations to date
0
Altmetric
Miscellaneous

Targeting T cell costimulation in autoimmune disease

&
Pages 275-289 | Published online: 25 Feb 2005

Bibliography

  • BIAS WB, REVEILLE JD, BEATY TH, MEYERS DA, ARNETT FC: Evidence that autoimmunity in man is a mendelian dominant trait. Am. j Hum. Genet. (1986) 39(5):584–602.
  • BRETSCHER P: The two-signal model of lymphocyte activation twenty-one years later. Ittamuriol. Today (1992) 13:74–76.
  • •Overview of the two-signal model of T cell activation.
  • RACKE MK, SCOTT DE, QUIGLEY L et al.: Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. Chh. Invest. (1995) 96(5):2195–2203.
  • •Explanation of the difference between memory cell and naive cell costimulation and demonstration of the importance of timing of CTLA-41g administration on clinical outcome.
  • LONDON CA, LODGE MP, ABBAS AK: Functional responses and costimulator dependence of memory CD4+ T cells. Immuriol. (2000) 164:265–272.
  • DAMLE NK, KLUSSMAN K, LEYTZE G et al.: Costimulation of T lymphocytes with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 induces functional expression of CTLA-4, a second receptor for B7. j Ittamuriol. (1994) 152(6):2686–2697.
  • HENRY J, MILLER MM, PONTAROTTI P: Structure and evolution of the extended B7 family. Immuriol. Today (1999) 20:285–288.
  • MUELLER DL: T cells: a proliferation of costimulatory molecules. Curr. Biol. (2000) 10:R227–R230.
  • SCHULZE-OSTHOFF K, FERRARI D, LOS M, WASSELBORG S: Apoptosis signalling by death recptors. Eur. j Biochem. (1998) 254:439–459.
  • GRAKOUI A, BROMLEY SK, SUMEN C etal.: The immunological synapse: a molecular machine controlling T cell activation. Science (1999) 285(5425):221–227.
  • ••Description of the immunological synapseand its relation to TCR engagement.
  • GREEN JM, NOEL PJ, SPERLING Al et al.: Absence of B7- dependent responses in CD28 deficient mice. Immunity(1994) 1:501–508
  • REISER H, FREEMAN GJ, RAZI-WOLF Z, GIMMI CD, BENACERRAF B, NADLER LM: Murine B7 antigen provides an efficient costimulatory signal for activation of murine T lymphocytes via the T cell receptor/CD3 complex. Proc. Natl. Acad. Sci. USA (1992) 89:271–275.
  • WU Y, GUO Y, LIU Y: A major costimulatory molecule on antigen-presenting cells, CTLA4 ligand A, is distinct from B7. j Exp. Med. (1993) 178:1789–1793.
  • LENSCHOW DJ, SU GH-T, ZUCKERMAN LA et al.: Expression and functional significance of an additional ligand for CTLA-4. Proc. Natl. Acad. Sci. USA (1993) 90:11054–11058.
  • CHEN C, FAHERTY DA, GAULT A et al.: Monoclonal antibody 2D10 recognizes a novel T cell costimulatory molecule on activated murine B lymphocytes. I Immuriol. (1994) 152:2105–2114.
  • SCHWARTZ RH: A cell culture model forT lymphocyte clonal energy. Science (1990) 248:1349–1356.
  • JUNE CH, BLUESTONE JA, NADLER LM, THOMPSON CB: The B7 and CD28 receptor families. Ittamuriol. Today (1994) 15:321–331.
  • THOMPSON CB, LINDSTEN T, LEDBETTER JA et al.: CD28 activation pathway regulates the production of multiple T cell-derived lymphokines/ cytokines. Proc. Natl. Acad. Sci. USA (1989) 86:1333–1337.
  • TAN R, TEH SJ, LEDBETTER JA, LINSLEY PS, TEH HS: B7 costimulates proliferation of CD4-8+ T lymphocytes but is not required for the deletion of immature CD4+8+ thymocytes. j Ittamuriol. (1992) 49:3217–3224.
  • HARDING FA, MCARTHUR JG, GROSS JA, RAULET DH, ALLISON JP: CD28-mediated signalling costimulates murine T cells and prevents induction of anergy in T cell clones. Nature (1992) 356:607–609.
  • ••Demonstration that CD28 costimulationprevents T cell anergy.
  • BOUSSIOTIS VA, FREEMAN GJ, GREY G, GRIBBEN J, NADLER LM: B7 but not ICAM-1 costimulation prevents the induction of human alloantigen specific tolerance. J Exp. Med. (1993) 178:1753–1763.
  • KLAUS SJ, PINCHUK LM, OCHS HD et al.: Costimulation through CD28 enhances T cell-dependent B cell activation via CD4O-CD4OL interaction. Immuriol. (1994) 152:5643–5652.
  • DE BOER M, KASRAN A, KWEKKEBOOM J, WALTER H, VANDENBERGHE P, CEUPPENS JL: Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur. Immuriol. (1993) 23:3120–3125.
  • BOISE LH, MINN AJ, NOEL P etal.: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xl. Immunity (1995) 3:87–98.
  • LINDSTEN T, LEE KP, HARRIS ES etal.: Characterization of CTLA4 structure and expression on human T cells. I Ittamuriol. (1993) 151:3489–3499.
  • BORRIELLO F, SETHNA MP, BOYD SD et al.: B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity (1997) 6:303–313.
  • •Functional explanation of two B7 costimulatory molecules.
  • LENS CHOW DJ, WALUNAS TL, BLUESTONE JA: CD28/B7 system of T cell costimulation. Ann. Rev Immunol. (1996) 14:233–258.
  • MCADAM, AJ, SCHWEITZER AN, SHARPE AH: The role of B7 costimulation in activation and differentiation of CD4+ and CD8+ T cells. Immuriol. Rev (1998) 165:231–247.
  • SCHWEITZER AN, BORRIELLO FR, WONG C, ABBAS AK, SHARPE AH: Role of costimulators in T cell differentiation: studies using antigen-presenting cells lacking expression of CD80 or CD86. I Immuriol. (1997) 158:2713–2722.
  • •Demonstrates the importance of B7 in the differentiation of T cells into either THl. or TH2 cells.
  • AZUMA M, YSSEL H, PHILLIPS JH, SPITS H, LANIER LL: Functional expression of B7/BB1 on activated T lymphocytes. I Exp. Med. (1993) 177:845–850.
  • SAMSOM DM, HALL ND: B7/BB1, the ligand for CD28, is expressed on repeatedly activated human T cells in vitro. Eur.J. Inunuriol. (1993) 23:295–298.
  • KUCHROO VK, DAS MP, BROWN JA et al: B7-1 and B7-2 costimulatory molecules differentially activate the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell (1995) 80:707–718.
  • SCHWEITZER AN, BORRIELLO F, WONG RCK, ABBAS AK, SHARPE AH: Role of costimulators in T cell differentiation: Studies using antigen-presenting cells lacking expression of CD80 or CD86. j Inunuriol (1997) 158:2713–2722.
  • VAN DER MERWE PA, BODIAN DL, DAENKE S, LINSLEY P, DAVIS SJ: CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. I Exp. Med. (1997) 185:393–404.
  • IKEMIZU S, GILBERT RJ, FENNELLY JA et al.: Structure and dimerization of a soluble form of B7-1. Inununio, (2000) 12:51–60.
  • MORTON PA, FU XT, STEWART JA et al.: Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). Inunuriol (1996) 156:1047–1054.
  • ROGERS PR, CROFT M: CD28, EX-40, IFA-1 and CD4 modulation of TH1/TH2 differentiation is directly dependent on the dose of antigen. I hinnuriol. (2000) 164:2955–2963.
  • LIGERS A, XU C, SAARINEN S, HILLERT J, OLERUP 0: The CTLA-4 gene is associated with multiple sclerosis. Neuronninuriol (1999) 97:182–190.
  • LINSLEY PS, BRADY W, URNES M, GROSMAIRE LS, DAMLE NK, LEDBETTER JA: CTLA-4 is a second receptor for the B cell activation antigen B7. Exp. Med. (1991) 174:561–569.
  • LINSLEY PS, GREENE JL, TAN P et al.: Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. I Exp. Med. (1992) 176:1595–1604.
  • •Explanation of the different functions of CTLA-4 and CD28 in T cells.
  • TI VOL EA, BORRIELLO F, SCHWEITZER AN, LYNCH WP, BLUESTONE JA, SHARPE AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity (1995) 3:541-547. Initial observation that CTLA-4 is an important negative regulator of T cell activation.
  • GRIBBEN JG, FREEMAN GJ, BOUSSIOTIS VA et al: CTLA4 mediates antigen-specific apoptosis of human T cells. Proc. Natl. Acad. Sci. USA (1995) 92(3):811–815.
  • WALUNAS TL, LENSCHOW DJ, BAKKER CY et al.: CTLA-4 can function as a negative regulator of T cell activation. Inununio, (1994) 1:405–413.
  • KRUMMEL MF AND ALLISON JP: CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. I Exp. Med. (1996) 183(6):2533–2540.
  • SCHEIPERS AND REISER H: Fas-independent death of activated CD4+ T lymphocytes induced by CTLA-4 crosslinking. Proc. Natl. Acad. Sci. USA (1998) 95(7):10083–10088.
  • WALUNAS TL, BAKKER CY, BLUESTONE JA: CTLA-4 ligation blocks CD28-dependent T cell activation. I Exp. Med. (1996) 183(6):2541–2550.
  • CHUANG E, ALEGRE ML, DUCKETT CS, NOEL PJ, VANDER HEIDEN MG, THOMPSON CB: Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. I hinnuriol. (1997) 159(1):144–151.
  • SHIRATORI T, MIYATAKE S, OHNO H et al.: Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity (1997) 6(5):583–589.
  • ZHANG Y, ALLISON JP: Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Nati Acad. Li. USA (1997) 94(17):9273–9278.
  • KOUKI T, SAWAI Y, GARDINE CA, FISFALEN ME, ALEGRE ML, DEGROOT LJ: CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves' disease. I Inunuriol (2000) 165(10:6606–6611.
  • BARRAT FJ, LE DEIST F, BENKERROU M et al.: Defective CTLA-4 cycling pathway in Chediak-Higashi syndrome: a possible mechanism for deregulation of T lymphocyte activation. Proc. Natl. Acad. Sci. USA (1999) 96(15)8645–8650.
  • YOSHINAGA SK, WHORISKEY JS, KHARE S et al.: T cell costimulation through B7RP-1 and ICOS. Nature (1999) 402(6763):827–832.
  • COYLE AJ, LEHAR S, LLOYD C et al: The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Inununio, (2000) 13(1):95–105.
  • •Demonstrates the importance of ICOS in the T cell response.
  • MAGES HW, HUTLOFF A, HEUCK C et al: Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur. Irronuriol (2000) 30(4):1040–1047
  • MCADAM AJ, CHANG TT, LUMELSKY AE et al: Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. Irronuriol (2000) 165:5035–5040.
  • HUTLOFF A, DITTRICH AM, BEIER KC et al:ICOS is an inducible T cell costimulator structurally and functionally related to CD28. Nature (1999) 397(6716):263–266.
  • SHINOHARA T, TANIWAKI M, ISHIDA Y, KAWAICHI M, HONJO T: Structure and chromosomal localization of the human PD-1 gene (PDCD1). Cerionncs (1994) 23(3):704–706.
  • FINGER LR, PU J, WASSERMAN R et al.: The human PD-1 gene: complete cDNA, genomic organization and developmentally regulated expression in B cell progenitors. Gene (1997) 197(1-2):177–187.
  • FREEMAN GJ, LONG AJ, IWAI Y et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. I Exp. Med. (2000) 192(7):1027–1034.
  • VIVIER E, DAERON M: Immunoreceptor tyrosine-based inhibition motifs. Inunuriol Today (1997) 18:286–291.
  • AGATA Y, KAWASAKI A, NISHIMURA H et al.: Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. hionuriol. (1996) 8:765–772.
  • VIBHAKAR R, JUAN G, TRAGANOS F, DARZYNKIEWICZ Z, FINGER LR: Activation-induced expression of human programmed death-1 gene in T lymphocytes. Exp. Cell Res. (1997) 232(1):25–28.
  • LATCHMAN Y, WOOD CR, CHERNOVA T et al.: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. bronurrol (2001) 2:261–268.
  • •Demonstrates the importance of PD-1 ligands in T cell inhibition.
  • PATERSON DJ, JEFFERIES WA, GREEN JR et al.: Antigens of activated rat T lymphocyyes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mal bronurrol (1987) 24:1281–1289.
  • NISHIMURA H, MINATO N, NAKANO T, HONJO T: Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immurrol. (1998) 10(10):1563–1572.
  • NOHARA C, AKIBA H, NAKAJIMA A et al: Amelioration of experimental autoimmune encephalomyelitis with anti-OX 40 ligand monoclonal antibody: A critical role for OX 40 ligand in migration, but not development, of pathogenic T cells. J. bronurrol (2001) 166:2108–2115.
  • •Explanation of the involvement of OX 40 in migration and possible memory cell development.
  • GRAMAGLIA I, AMHA J, PIPPIG SD,WEINBERG AD, KILLEEN N, CROFT M: The OX 40 costimulaory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Irronurrol. (2000) 165:3043–3050
  • KOPF M, RUEDL C, SCHMITZ N et al.:OX 40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. bronunio, (1999) 11:699–708.
  • ROGERS PR, SONG J, GRAMAGLIA I,KILLEEN N, CROFT M: OX 40 promotes Bc1-xL and Bc1-2 expression and is essential for long-term survival of CD4 T cells. Immunity (200i) 15(3):445–455.
  • HOWARD LM, MIGA AJ, VANDERLUGT CL, DAL CANTO MC, LAMAN JD, NOELLE RJ: Mechanisms of immunotherapeutic intervention by anti-CD4OL (CD154) antibody in an animal model of multiple sclerosis. J. Clin. Invest. (1999) 103(2):281–290.
  • LEFRANCOIS L, ALTMAN JD, WILLIAMS K, OLSON S: Soluble antigen and CD40 triggering are sufficient to induce primary and memory cytotoxic T cells. J. Immurrol. (2000) 164(2):725–732.
  • MCCORMICK AL, SANTOS-ARGUMEDO L, THOMAS MS, HEATH AW: Cell surface expression of cdl 54 inhibits alloantibody responses: a mechanism for the prevention of autoimmune responses against activated T cells? Cell. Immurrol. (1999) 195:157–161.
  • VAN DEN EERTWEGH AJ, NOELLE RJ, ROY M, SHEPHERD DM, ARUFFO A: In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD 40 ligand, cytokines and antibody production delineates sites of cognate T-B cell interactions. J. Exp. Med. (1993) 178:1555–1565.
  • •Discusses CD4OL function in T cells and its relation to humoral immunity.
  • SALOMON B, RHEE L, BOUR-JORDAN H et al.: Development of spontaneous autoimmune peripheral polyneuropathy in B7-2-deficient mice. J. Exp. Med. (2001) 194(5):677–684.
  • MILLER SD, VANDERLUGT CL, LENSCHOW DJ et al: Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity (i995) 3:739–745.
  • VANDERLUGT CL, KARANDIKAR NJ, LENSCHOW DJ, DAL CANTO MC, BLUESTONE JA, MILLER SD: Treatment with intact antiB7-1 mAb during disease remission enhances epitope spreading and exacerbates relapses in R-EAE. Neuroinonurrol (1997) 79:113–118.
  • LENSCHOW DJ, HO SC, SATTAR H et al: Differential effects of antiB7-1 and antiB7-2 mAb treatment on the development of diabetes in the NOD mouse. J. Exp. Med. (1995) 181:1145–1155.
  • LINSLEY PS, WALLACE PM, JOHNSON J et al: Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science (1992) 257:792–795.
  • LENSCHOW DJ, ZENG Y, THISTLETHWAITE JR et al.: Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA-41g. Science (1992) 257:789–792.
  • LIN H, BOLLING SF, LINSLEY PS etal.: Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA-41g plus donor-specific transfusion. J. Exp. Med. (1993) 178:1801–1806.
  • FINCK BK, LINSLEY PS, WOFSY D: Treatment of murine lupus with CTLA-41g. Science (1994) 265:1225–1227.
  • PERRIN PJ, JUNE CH, MALDONADO JH, RATTS RB, RACKE MK: Blockade of CD28 during in vitro activation of encephalitogenic T cells or after disease onset ameliorates experimental autoimmune encephalomyelitis. J.Immunol. (1999) 163(3):1704–1710.
  • VAN GELDER M, KINWEL-BOHRE EP, VAN BEKKUM DW: Treatment of experimental allergic encephalomyelitis in rats with total body irradiation and syngeneic BMT. Bone Marrow Transplant. (1993) 11:233–241.
  • AKDIS CA, JOSS A, AKDIS AF, KURT B: A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J. (2000) 14(12):1666–1668.
  • HOWARD LM, MIGA A, VANDERLUGT CL et al: Mechanisms of immunotherapeutic intervention by anti-CD4OL (CD154) antibody in an animal model of multiple sclerosis. J. Clin. Invest. (1999) 103:281–290.
  • PERRIN PJ, LOVETT-RACKE A, PHILLIPS SM, RACKE MK: Differential requirements of naive and memory T cells for CD28 costimulation in autoimmune pathogenesis. Histol Histopath. (1999) 14(4):1269–1276.
  • CROSS AH, GIRARD TJ, GIACOLETTO KS etal.: Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation. j Clin. Invest. (1995) 95:2783–2789.
  • SAYEGH MH, AKALIN E, HANCOCK WW et al.: CD28-B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. _J. Exp. Med. (1995) 181:1869–1874.
  • KNOERZER DB, KARR RW, SCHWARTZ BD, MENGLE-GAW LJ: Collagen-induced arthritis in the BB rat: prevention of disease by treatment with CTLA4-Ig. I Chi]. Invest. (1995) 96:987–993.
  • WALLACE PM, JOHNSON JS, MACMASTER JF, KENNEDY KA, GLADSTONE P, LINSLEY PS: CTLA4Ig treatment ameliorates the lethality of murine graft versus host disease across major histocompatibility complex barriers. Transplantation (1994) 58:602–610.
  • MCINTOSH KR, LINSLEY PS, BACHA PA, DRACHMAN DB: Immunotherapy of experimental autoimmune myasthenia gravis: selective effects of CTLAIg and synergistic combination with an 1L2-Diphtheria toxin fusion protein. j Neuroimmurrol. (1998) 87:136–146.
  • ZIMMERMAN R, RADHAKRISHNAN J, VALERI A, APPEL G: Advances in the treatment of lupus nephritis. Ann. Rev Med. (2001) 52:63–78.
  • LENSCHOW DJ, HEROLD KC, RHEE L et al: CD28/B7 regulation of TH1 and TH2 subsets in the development of autoimmune diabetes. Immunity (1996) 5:285–283.
  • CORRY DB, REINER SL, LINSLEY PS,LOCKSLEY RM: Differential effects of blockade of CD28-B7 on the development of TH1 or TH2 effector cells in experimental leishmaniasis. j Immurrol (1994) 153:4142–4148.
  • SAYEGH MH, AKALIN E, HANCOCK WW et al: CD28-B7 blockade after alloantigenic challenge in vivo inhibits TH1 cytokines but spares TH2. J. Exp. Med. (1995) 181:1869–1874.
  • LEACH DR, KRUMMEL MF, ALLISON JP: Enhancement of antitumour immunity by CTLA-4 blockade. Science (1996) 271: 1734-1736.
  • DONG C, JUEDES AE, TEMANN UA etal.: ICOS costimulatory receptor is essential for T cell activation and function. Nature (2001) 409(6816):97–101.
  • •Explanation of the importance of ICOS in ongoing T cell responses.
  • MCADAM AJ, GREENWALD RJ, LEVIN MA et al.:ICOS is critical for CD40-mediated antibody class switching. Nature (2001) 409(6816):102–105.
  • TAFURI A, SHAHINIAN A, BLADT F et al:ICOS is essential for effective T helper-cell responses. Nature (2001) 409(6816):105–109.
  • SPERLING Al, BLUESTONE JA: LFA-1 interaction with ICAM-1 and ICAM-2 regulates TH2 cytokine production. Immurrol (1998) 161:5138–5142.
  • •Description of TH2 impairment and TH1 promotion during ICOS blockade.
  • SPORICI RA, BESWICK RL: ICOS ligand costimulation is required for T cell encephalitogenicity. CBI]. Immurrol. (2001) 100(3):277–288.
  • CHEN D, JUEDES AE, TEMANN U et al: ICOS costimulatory receptor is essential for T cell activation and function. Nature (2001) 409:97–101.
  • GONZALO JA, TIAN J, DELANEY T et al:ICOS is critical for T helper cell-mediated lung mucosal inflammatory responses. Nat. Immurrol (2001) 2:597–604.
  • MATHUR M, HERRMANN K, QIN Y etal.: CD28 interactions with either CD80 or CD86 are sufficient to induce allergic airway inflammation in mice. Am. Respir: Cell. Ma Biol. (1999) 21:498–509.
  • NISHIMURA H, NOSE M, HIAI H, MINATO N, HONJO T: Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immurrio, (1999) 11 (2):141–151.
  • NISHIMURA H AND HONJO T: PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immurrol. (2001) 22(5):265–268.
  • NISHIMURA H, OKAZAKI T, TANAKA Y et al.: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (2001) 291(5502):319–322.
  • FREEMAN GJ, LONG AJ, IWAI Y et al.: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. I Esp. Med. (2000) 192:1027-1034. ma. DONG H, ZHU G, TAMADA K, CHEN L: B7-H1, a third member of the B7 family, costimulates T cell proliferation and interleukin-10 secretion. Nat. Med. (1999) 5:1365–1369.
  • TSENG SY, OTSUJI M, GORSKI K et al: B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. Exp. Med. (2001) 193:839–846.
  • CARRENO BM, COLLINS: The B7 family of ligands and its receptors: New pathways for costimulation and inhibition of immune responses. Ann. Rev Immurrol. (2002) 20:29-53. Detailed description of the B7 family of costimulators.
  • WEINBERG AD, WEGMANN KW, FUNATAKE C et al.: Blocking 0X-40/0X 40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. I Immurrol. (1999) 162(3):1818–1826.
  • •Conveys the observation that the OX 40 blockade could inhibit autoreactive T cells and spare the rest of the T cell repertoire.
  • YOSHIOKA T, NAKAJIMA A, AKIBA H et al.: Contribution of OX 40/ OX 40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur. Immurrol (2000) 30(10):2815–2823.
  • BANSAL-PAKALA P, JEMBER AGH, CROFT M: Signalling through OX 40 (CD134) breaks peripheral T cell tolerance. Nat. Med. (2001) 7(8):907–912.
  • •Demonstrates how tolerised cells can be reactivated through OX 40 signalling.
  • WEINBERG AD, VELLA AT, CROFT M: OX-40: life beyond the effector T cell stage. Immunology (1998) 10:471–480.
  • DEVI BS, NOORDIN SV, KRAUSZ T, DAVIES KA: Peripheral blood lymphocytes in SLE-hyperexpression of CD154 on T and B lymphocytes and increased number of double negative T cells. I Autoimmun (1998) 11:471–475.
  • SCHAUB M, ISSAZADEH S, STADLBAUER TH, PEACH R, SAYEGH MH, KHOURY SJ: Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis I Neuroimmurrol (1999) 96(2):158–166.
  • LI XC, LI Y, DODGE I et al: Induction of allograft tolerance in absence of Fas-mediated apoptosis. I Immurrol. (1999) 163:2500–2507.
  • DAIKH DI, WOFSY D: Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. Immurrol (2001) 166(5):2913–2916.
  • ABRAMS JR, LEBWOHL MG, GUZZO CA et al: CTLA4Ig-medicated blockade of T cell costimulation in patients with psoriasis vulgaris. I CBI]. Invest. (1999) 103(9):1243–1252.
  • ABRAMS JR, KELLEY SL, HAYES E et al.: Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells and endothelial cells. _J. Exp. Med. (2000) 192(5):681–694. Demonstrates the usefulness of CTLA-41g in human autoimmune disease.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.