154
Views
49
CrossRef citations to date
0
Altmetric
Miscellaneous

Fibroblast growth factors in cancer: therapeutic possibilities

, &
Pages 469-482 | Published online: 25 Feb 2005

Bibliography

  • ORNITZ DM, ITOH N: Fibroblast growth factors. Genome Biol. (2001) 2(3):1–12.
  • •Brief FGF/FGFR review; includes a summary of FGF knockout experiments.
  • POWERS CJ, MCLESKEY SW,WELLSTEIN A: Fibroblast growth factors, their receptors and signalling. En doer. Relat. Cancer (2000) 7(3):165–197.
  • ••Thorough FGF/FGFR review; includes adiscussion of the role of HSPG in FGF/ FGFR signalling.
  • SZEBENYI G, FALLON JF: Fibroblast growth factors as multifunctional signalling factors. hat. Rev Cytol. (1999) 185:45–106.
  • ••Complete FGF/FGFR review.
  • KLINT P, CLAESSON-WELSH L: Signaltransduction by fibroblast growth factor receptors. Front Biosci. (1999) 4:D165–D177.
  • KIM HS: The human FGF gene family: chromosome location and phylogenetic analysis. Cytogenet. Cell Genet. (2001) 93(1-2):131–132.
  • TASSI E, AL-ATTAR A, AIGNER A et al.: Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. Biol. Chem. (2001) 276(43):40247–40253.
  • WU DQ, KAN MK, SATO GH, OKAMOTO T, SATO JD: Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. I. Biol. Chem. (1991) 266(25):16778–16785.
  • CZUBAYKO F, SMITH RV,CHUNG HC, WELLSTEIN A: Tumour growth and angiogenesis induced by a secreted binding protein for fibroblast growth factors. J. Biol. Chem. (1994) 269(45):28243–28248.
  • AIGNER A, BUTSCHEID M,KUNKEL P et al.: An FGF-binding protein (FGF-BP) exerts its biological function by parallel paracrine stimulation of tumour cell and endothelial cell proliferation through FGF-2 release. Int. J. Cancer (2001) 92(4):510–517.
  • FURTHAUER M, LIN W, ANG SL, THISSE B, THISSE C: Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat. Cell Biol. (2002) 4(2):170–174.
  • TSANG M, FRIESEL R, KUDOH T, DAWID IB: Identification of Sef, a novel modulator of FGF signalling. Nat. Cell Biol. (2002) 4(2):165–169.
  • ALOY P, RUSSELL RB: Interrogating protein interaction networks through structural biology. Proc. Nati Acad. Sci. USA (2002) 23:23.
  • SCHOORLEMMER J, GOLDFARB M: Fibroblast growth factor homologous factors are intracellular signalling proteins. Can: Biol. (2001) 11(10):793–797.
  • XIE MH, HOLCOMB I, DEUEL B et al: FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine (1999) 11(10):729–735.
  • TOMLINSON E, FU L, JOHN L et al: Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology (2002) 143(5):1741–1747.
  • NICHOLES K, GUILLET S,TOMLINSON E et al.: A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol (2002) 160(6):2295–2307.
  • SHIMADA T, MIZUTANI S, MUTO T et al.: Cloning and characterization of FGF23 as a causative factor of tumour-induced osteomalacia. Proc. Nati Acad. Sci. USA (2001) 98(11):6500–6505.
  • •Shows that tumours associated with phosphate-wasting syndrome overexpress FGF-23 and expression of this protein induces phosphate-wasting syndrome in animals.
  • WHITE KE, EVANS WE,O'RIORDAN JLH et al.: Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. The ADHR Consortium. Nat. Genet. (2000) 26(3):345–348.
  • BOWE AE, FINNEGAN R, JAN DE BEUR SM et al.: FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem. Biophys. Res. Commun. (2001) 284(4):977–981.
  • UENO S, ITO J, NAGAYASU Y, FURUKAWA T, YOKOYAMA S: An acidic fibroblast growth factor-like factor secreted into the brain cell culture medium upregulates apoE synthesis, HDL secretion and cholesterol metabolism in rat astrocytes. Biochim. Biophys. Acta (2002) 1589(3):261–272.
  • NUMAKAWA T, YOKOMAKU D, KIYOSUE K et al: Basic fibroblast growth factor evokes a rapid glutamate release through activation of the MAPK pathway in cultured cortical neurons. Biol. Chem. (2002) 28:28.
  • TAIRA M, YOSHIDA T,MIYAGAWA K et al.: cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity. Proc. Nati Acad. Sci. USA (1987) 84(9):2980–2984.
  • JEFFERS M, SHIMKETS R,PRAYAGA S et al: Identification of a novel human fibroblast growth factor and characterization of its role in oncogenesis. Cancer Res. (2001) 61(7):3131–3138.
  • ROPIQUET F, HUGUENIN S, VILLETTE JM et al: FGF7/KGF triggers cell transformation and invasion on immortalised human prostatic epithelial PNT1A cells. Int. J. Cancer (1999) 82(2):237–243.
  • MATSUMOTO-YOSHITOMI S, HABASHITA J, NOMURA C, KUROSHIMA K, KUROKAWA T: Autocrine transformation by fibroblast growth factor 9 (FGF-9) and its possible participation in human oncogenesis. Int. .1. Cancer (1997) 7 1 (3):442–450.
  • DELLI BOVI P, CURATOLA AM, KERN FG et al.: An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell (1987) 50(5):729–737.
  • GOLDFARB M, DEED R,MACALLAN D et al: Cell transformation by Int-2: a member of the fibroblast growth factor family. Oncogene (1991) 6(1):65–71.
  • HAJITOU A, CALBERG-BACQ CM: Fibroblast growth factor 3 is tumorigenic for mouse mammary cells orthotopically implanted in nude mice. Int. J. Cancer (1995) 63(5):702–709.
  • JAYE M, LYALL RIVI, MUDD R, SCHLESSINGER J, SARVER N: Expression of acidic fibroblast growth factor cDNA confers growth advantage and tumourigenesis to Swiss 3T3 cells. EMBOI. (1988) 7(4):963–969.
  • MACARTHUR CA, LAWSHE A, SHANKAR DB, HEIKINHEIMO M, SHACKLEFORD GM: FGF-8 isoforms differ in NIH3T3 cell transforming potential. Cell Growth Differ. (1995) 6(7):817–825.
  • DAPHNA-IKEN D, SHANKAR DB, LAWSHE A et al.: MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia. Oncogene (1998) 17(21):2711–2717.
  • CLARK JC, TICHELAAR JW,WERT SE et al.: FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. Jim. j Physiol Lung Cell Mol Physiol (2001) 280(4)1705–L715.
  • MORINI M, ASTIGIANO S,MORA M et al.: Hyperplasia and impaired involution in the mammary gland of transgenic mice expressing human FGF4. Oncogene (2000) 19(52):6007–6014.
  • KITSBERG DI, LEDER P: Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene (1996) 13(12):2507–2515.
  • NGUYEN HQ, DANILENKO DM, BUCAY N et al: Expression of keratinocyte growth factor in embryonic liver of transgenic mice causes changes in epithelial growth and differentiation resulting in polycystic kidneys and other organ malformations. Oncogene (1996) 12(10):2109–2119.
  • TALARICO D, ITTMANN MM, BRONSON R, BASILICO C: A retrovirus carrying the k-FGF oncogene induces diffuse meningeal tumours and soft-tissue fibrosarcomas. Ma Cell. Biol. (1993) 13(4):1998–2010.
  • GROSS JL, HERBLIN WF,DUSAK BA et al.: Effects of modulation of basic fibroblast growth factor on tumour growth in vivo. I Nat! Cancer Inst. (1993) 85(2):121–131.
  • LEITH JT, PAPA G, QUARANTO L, MICHELSON S: Modification of the volumetric growth responses and steady-state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin. Br. Cancer (1992) 66(2):345–348.
  • KRUCZYNSKI A, ASTRUC J,CHAZOTTES E, KISS R: Characterization of the hormone-sensitivity of three human nonsmall-cell lung cancers grafted onto nude mice. Oncology (1993) 50(4):285–292.
  • FIDLER IJ: Angiogenesis and cancer metastasis. Cancer J. Sri. Am. (2000) 6\(Suppl. 2):5134–5141.
  • FOLKMAN J: Angiogenesis and angiogenesis inhibition: an overview. Experientia Supplementum (1997) 79:1–8.
  • KLEIN S, ROGHANI M, RIFKIN DB: Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. Experientia Supplementum (1997) 79:159–192.
  • DAMEN JE, GREENBERG AH, WRIGHT JA: Transformation and amplification of the k-FGF proto-oncogene in NIH-3T3 cells and induction of metastatic potential. Biochim. Biophys. Acta (1991) 1097(2):103–110.
  • MIYAKE H, HARA I,YOSHIMURA K et al.: Introduction of basic fibroblast growth factor gene into mouse renal cell carcinoma cell line enhances its metastatic potential. Cancer Res. (1996) 56(10):2440–2445.
  • LO J, HURTA RA: Overexpression of k-FGF or bFGF results in altered expression of matrix metalloproteinases: correlations with malignant progression and cellular invasion. Cell Biol. hat. (2002) 26(4):319–325.
  • ZANG XP, PENTO JT: Keratinocyte growth factor-induced motility of breast cancer cells. Gin. Exp. Metastasis (2000) 18(7):573–580.
  • GRANERUS M, ENGSTROM W: Dual effects of four members of the fibroblast growth factor member family on multiplication and motility in human teratocarcinoma cells in vitro. Anticancer Res. (2000) 20(5B):3527–3531.
  • GARDNER AM, JOHNSON GL: Fibroblast growth factor-2 suppression of tumour necrosis factor alpha-mediated apoptosis requires Ras and the activation of mitogen-activated protein kinase. J. Biol. Chem. (1996) 271(24):14560–14566.
  • SONG S, WIENTJES MG, GAN Y, AU JL: Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc. Nat] Acad. Sri. USA (2000) 97(15):8658–8663.
  • •Demonstrates that FGFs mediate tumour cell resistance to a variety of chemotherapeutic drugs.
  • MIYAKE H, HARA I, GOHJI K et al.: Expression of basic fibroblast growth factor is associated with resistance to cisplatin in a human bladder cancer cell line. Cancer Lett. (1998) 123(2):121–126.
  • MENZEL T, RAHMAN Z,CALLEJA E et al.: Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukaemia and is associated with resistance to fludarabine. Blood (1996) 87(3):1056–1063.
  • JUNG M, KERN FG,JORGENSEN TJ et al.: Fibroblast growth factor-4 enhanced G2 arrest and cell survival following ionizing radiation. Cancer Res. (1994) 54(19):5194–5197.
  • WHITE KE, JONSSON KB,CARN G et al: The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumours that cause phosphate wasting.Endocrinol Metab. (2001) 86(2):497–500.
  • JACQUEMIER J, ADELAIDE J, PARC P et al: Expression of the FGFR1 gene in human breast-carcinoma cells. Int. Cancer (1994) 59(3):373–378.
  • CHESI M, NARDINI E,BRENTS LA et al.: Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat. Genet. (1997) 16(3):260–264.
  • RICHELDA R, RONCHETTI D, BALDINI L et al.: A novel chromosomal translocation t(4; 14) (p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. Blood (1997) 90(10):4062–4070.
  • PLOWRIGHT EE, LIZ,BERGSAGEL PL et al.: Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood (2000) 95(3):992–998.
  • PEGRAM M, SLAMON D: Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin. Onto] (2000) 27(5 Sunni. 9):13–19.
  • CHESI M, BRENTS LA, ELY SA et al: Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumour progression in multiple myeloma. Blood (2001) 97(3):729–736.
  • FURITSU T, TSUJIMURA T,TONO T et al.: Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukaemia cell line causing ligand-independent activation of c-kit product. Gin. Invest. (1993) 92(4):1736–1744.
  • SANTORO M, CARLOMAGNO F, ROMANO A et al: Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science (1995) 267(5196):381–383.
  • JEFFERS M, SCHMIDT L,NAKAIGAWA N et al.: Activating mutations for the met tyrosine kinase receptor in human cancer. Proc. Natl. Acad. Sci. USA (1997) 94(21):11445–11450.
  • PIAO X, PAULSON R,VAN DER GEER P, PAWSON T, BERNSTEIN A: Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1. Proc. Nati Acad. Sci. USA (1996) 93(25):14665–14669.
  • HART KC, ROBERTSON SC, KANEMITSU MY et al.: Transformation and Stat activation by derivatives of FGFR1, FGFR3 and FGFR4. Oncogene (2000) 19(29):3309–3320.
  • CAPPELLEN D, DE OLIVEIRA C, RICOL D et al.: Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. (1999) 23(1):18–20.
  • •Identification of activating mutations in FGFR3 in 25% (3/12) cervical carcinomas and somatic activating mutations in 35% (9/26) bladder carcinomas examined.
  • LIZ, ZHU YX, PLOWRIGHT EE et al:The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood (2001) 97(8):2413–2419.
  • •Demonstration of weak or strong oncogenicity of wild type or mutationally activated FGFR3, respectively, in an in vivo model.
  • EZZAT S, ZHENG L, ZHU XF, WU GE, ASA SL: Targeted expression of a human pituitary tumour-derived isoform of FGF receptor-4 recapitulates pituitary tumourigenesis. Clin. Invest. (2002) 109(1):69–78.
  • •Identification of a novel, constitutively activated, N-terminally-truncated FGFR4 in a human pituitary tumour and demonstration that this oncogene causes pituitary tumours in transgenic mice.
  • SMEDLEY D, HAMOUDI R,CLARK J et al: The t(8;13) (p 1 1;q 11– 12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP Hum. Mol. Genet. (1998) 7(4):637–642.
  • DEMIROGLU A, STEER EJ,HEATH C et al.: The t(8;22) in chronic myeloid leukaemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood (2001) 98(13):3778–3783.
  • •Demonstrates transforming activity of a tumour-associated FGFR1 fusion protein and inhibition of transformation with a tyrosine-kinase inhibitor and inibitors of signalling molecules.
  • POPOVICI C, ADELAIDE J,OLLENDORFF V et al: Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13). Proc. Nati Acad. Sci. USA (1998) 95(10):5712–5717.
  • POPOVICI C, ZHANG B,GREGOIRE MJ et al: The t(6,8) (q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood(1999) 93(4):1381–1389.
  • REITER A, SOHAL J,KULKARNI S et al.: Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13) (p11;q12) myeloproliferative syndrome. Blood (1998) 92(5):1735–1742.
  • XIAO S, NALABOLU SR,ASTER JC et al.: FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat. Genet. (1998) 18(1):84–87.
  • GUASCH G, MACK GJ,POPOVICI C et al.: FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t (8;9) (p12; q33). Blood (2000) 95(5):1788–1796.
  • MANSOUR SL: Targeted disruption of Int-2 (FGF-3) causes developmental defects in the tail and inner ear. Mol. Reprod. Dev. (1994) 39(1):62–67; discussion 67–68.
  • TERADA M, YOSHIDA T, SAKAMOTO H et al: Biological significance of the hst-1 gene. Princess Takamatsu Symp. (1989) 20:71–80.
  • LISCIA DS, MERLO GR,GARRETT C et al.: Expression of Int-2 mRNA in human tumours amplified at the Int-2 locus. Oncogene (1989) 4(10):1219–1224.
  • LESE CM, ROSSIE KM, APPEL BN et al:Visualization of INT2 and HST1amplification in oral squamous cell carcinomas. Genes Chromosomes Cancer(1995) 12(4):288–295.
  • TSUDA T, TAHARA E,KAJIYAMA G et al.: High incidence of coamplification of hst-1 and Int-2 genes in human esophageal carcinomas. Cancer Res. (1989) 49(20):5505–5508.
  • KIURU-KUHLEFELT S,SARLOMO-RIKALA M, LARRAMENDY ML et al.: FGF4 and INT2 oncogenes are amplified and expressed in Kaposi's sarcoma. Mod. Pathol. (2000) 13(4):433–437.
  • HUANG YQ, LI JJ,MOSCATELLI D et al.: Expression of Int-2 oncogene in Kaposi's sarcoma lesions. J. Clin. Invest. (1993) 91(3):1191–1197.
  • NGUYEN M, WATANABE H,BUDS ON AE et al.: Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. Nat! Cancer Inst. (1994) 86(5):356–361.
  • RASMUSON T, GRANKVIST K, JACOBSEN J, LJUNGBERG B: Impact of serum basic fibroblast growth factor on prognosis in human renal cell carcinoma. Ear: J. Cancer (2001) 37(17):2199–2203.
  • LIN RY, ARGENTA PA, SULLIVAN KM, ADZICK NS: Diagnostic and prognostic role of basic fibroblast growth factor in Wilms' tumour patients. Clin. Cancer Res. (1995) 1(3):327–331.
  • FUJIMOTO K, ICHIMORI Y, YAMAGUCHI H et al.: Basic fibroblast growth factor as a candidate tumour marker for renal cell carcinoma. fpn J. Cancer Res. (1995) 86(2):182–186.
  • NGUYEN M, WATANABE H,BUDS ON AE, RICHIE JP, FOLKMAN J: Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J. Nat! Cancer Inst. (1993) 85(3):241–242.
  • LEUNIG A, TAUBER S, SPAETT R, GREVERS G, LEUNIG M: Basic fibroblast growth factor in serum and urine of patients with head and neck cancer. Oncol. Rep. (1998) 5(4):955–958.
  • LANDRISCINA M, CASSANO A, RATTO C et al.: Quantitative analysis of basic fibroblast growth factor and vascular endothelial growth factor in human colorectal cancer. Br. J. Cancer (1998) 78(6):765–770.
  • UGUREL S, RAPPL G, TILGEN W, REINHOLD U: Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumour progression and survival. Clin. Oncol (2001) 19(2):577–583.
  • UENO K, INOUE Y, KAWAGUCHI T, HOSOE S, KAWAHARA M: Increased serum levels of basic fibroblast growth factor in lung cancer patients: relevance to response of therapy and prognosis. Lung Cancer (2001) 31(2-3):213–219.
  • KURIMOTO M, ENDO S, HIRASHIMA Y, NISHIJIMA M, TAKAKU A: Elevated plasma basic fibroblast growth factor in brain tumour patients. Neurol Med. Chir: (Tokyo) (1996) 36(12):865–868; discussion 869.
  • GRAEVEN U, ANDRE N, ACHILLES E, ZORNIG C, SCHMIEGEL W: Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in patients with soft-tissue sarcoma. " Cancer Res. Clin. Oncol (1999) 125(10):577–581.
  • SALVEN P, TEERENHOVI L,JOENSUU H: A high pretreatment serum basic fibroblast growth factor concentration is an independent predictor of poor prognosis in non Hodgkin's lymphoma. Blood (1999) 94(10):3334–3339.
  • POON RT, NG 10, LAU C et al: Correlation of serum basic fibroblast growth factor levels with clinicopathologic features and postoperative recurrence in hepatocellular carcinoma. Am. Surg. (2001) 182(3):298–304.
  • LI Y, BASILICO C, MANSUKHANI A: Cell transformation by fibroblast growth factors can be suppressed by truncated fibroblast growth factor receptors. Ma Cell. Biol. (1994) 14(11):7660–7669.
  • HORI A, SASADA R,MATSUTANI E et al.: Suppression of solid tumour growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res. (1991) 51(22):6180–6184.
  • HOFFMAN RM: Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New Drugs (1999) 17(4):343–359.
  • KUO TH, KUBOTA T,WATANABE M et al.: Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice: the importance of orthotopic models toobtain relevant drug evaluation data.Anticancer Res. (1993) 13(3):627–630.
  • WILMANNS C, FAN D, O'BRIAN CA, BUCANA CD, FIDLER IJ: Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5- fluorouracil. Int. Cancer (1992) 52(1):98–104.
  • CHANDLER LA, SOSNOWSKI BA, GREENLEES L et al.: Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumour cell lines. hat. J. Cancer (1999) 81(3):451–458.
  • •Expression analysis of FGFRs in 60 human cancer cell lines.
  • BECKER D, LEE PL, RODECK U, HERLYN M: Inhibition of the fibroblast growth factor receptor 1 (FGFR-1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene (1992) 7(11):2303–2313.
  • YAMADA SM, YAMAGUCHI F,BROWN R, BERGER MS,MORRISON RS: Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. QM (1999) 28(1):66–76.
  • WANG Y, BECKER D: Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoural angiogenesis and tumour growth. Nat. Med. (1997) 3(8):887–893.
  • WAGNER M, LOPEZ ME, CAHN M, KORC M: Suppression of fibroblast growth factor receptor signalling inhibits pancreatic cancer growth M vitro and in vivo. Gastroenterology (1998) 114(4):798–807.
  • OZEN M, GIRI D, ROPIQUET F, MANSUKHANI A, ITTMANN M: Role of fibroblast growth factor receptor signalling in prostate cancer cell survival. Nat! Cancer Inst. (2001) 93(23):1783–1790.
  • SAIKI M, MIMA T,TAKAHASHI JC et al.: Adenovirus-mediated gene transfer of a truncated form of fibroblast growth factor receptor inhibits growth of glioma cells both M vitro and in vivo. J. Neurooncol (1999) 44(3):195–203.
  • DAVOL PA, BIZUNEH A,FRACKELTON AR JR: Wortmannin, a phosphoinositide 3-kinase inhibitor, selectively enhances cytotoxicity of receptor-directed-toxin chimaeras M vitro andM vivo. Anti-Cancer Res. (1999)19(3A):1705–1713.
  • •Analysis of six different toxin-conjugates targeting FGFR; demonstration that combination therapy with a PI3K inhibitor enhances tumour-killing efficacy in vitro and in vivo.
  • DAVOL P, BEITZ JG, MOHLER M et al: Saporin toxins directed to basic fibroblast growth factor receptors effectively target human ovarian teratocarcinoma in an animal model. Cancer (1995) 76(1)79–85.
  • SHAWVER LK, SLAMON D,ULLRICH A: Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell (2002) 1:117–123.
  • •Discussion of clinical findings using antibody or small molecule inhibitors of tyrosine kinases for cancer therapy.
  • HALUSKA P, ADJEI AA: Receptor tyrosine kinase inhibitors. Curt: Opin. Investig. Drugs(2001) 2(2):280–286.
  • •Discussion of the biology and clinical development of small molecule inhibitors of tyrosine kinases for cancer therapy.
  • ZHAO Y, LOUD, BURKETT J, KOHLER H: Chemical engineering of cell penetrating antibodies. I Immunol Methods (2001) 254(1-2):137–145.
  • VISINTIN M, SETTANNI G, MARITAN A et al.: The intracellular antibody capture technology (TACT): towards a consensus sequence for intracellular antibodies.' Ma Biol. (2002) 317(1):73–83.
  • CARTER P: Improving the efficacy of antibody-based cancer therapies. Nat. Rev Cancer (2001) 1(2):118–129.
  • ••Complete review of antibodies as cancertherapeutics.
  • WHITE CA, WEAVER RL,GRILLO-LOPEZ AJ: Antibody-targeted immunotherapy for treatment of malignancy. Ann. Rev Med. (2001) 52:125–145.
  • •Thorough review of antibodies as cancer therapeutics.
  • XU G, MCLEOD HL: Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res. (2001) 7(11):3314–3324.
  • •Thorough review of gene (GDEPT), virus (VDEPT) and ADEPT as cancer therapeutics.
  • CHART RV: Targeted delivery of chemotherapeutics: tumour-activated prodrug therapy. Adv. Drug Deify. Rev (1998) 31(1-2):89–104.
  • •Thorough review of tumour-activated prodrug cancer therapy.
  • KREITMAN RJ: Toxin-labelled monoclonal antibodies. Carr: Pharm. Biotechnol (2001) 2(4):313–325.
  • •Thorough review of use of conjugated antibodies as cancer therapeutics.
  • REITER Y: Recombinant immunotoxins in targeted cancer cell therapy. Adv. Cancer Res. (2001) 81:93–124.
  • •Thorough review of the use of conjugated antibodies as cancer therapeutics; includes information on use of growth factor-toxin conjugates in cancer therapy.
  • CLYNES RA, TOWERS TL, PRESTA LG, RAVETCH JV: Inhibitory Fc receptors modulate in vivo cytoxicity against tumour targets. Nat. Med. (2000) 6(4):443–446.
  • DYER MJ, HALE G, HAYHOE FG, WALDMANN H: Effects of CAMPATH-1 antibodies M vivoin patients with lymphoid malignancies: influence of antibody isotype. Blood(1989) 73(6):1431–1439.
  • IWAHASHI T, OKOCHI E,ARIYOSHI K et al.: Specific targeting and killing activities of antiP-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model. Cancer Res. (1993) 53(22):5475–5482.
  • IDUSOGIE EE, WONG PY,PRESTA LG et al.: Engineered antibodies with increased activity to recruit complement. J. Immunol (2001) 166(4):2571–2575.
  • SHIELDS RL, NAMENUK AK,HONG K et al.: High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. (2001) 276(9):6591–6604.
  • UMANA P, JEAN-MAIRET J,MOUDRY R, AMSTUTZ H, BAILEY JE: Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol (1999) 17(2):176–180.
  • HUGHES SE: Differential expression of the fibroblast growth factor receptor (FM) multigene family in normal human adult tissues. I Histochem. Cytochem. (1997) 45(7):1005–1019.
  • •Thorough irnmunohistochemical analysis of FGFR expression in normal human adult tissues.
  • INOUE K, WOOD CG,SLATON JW et al: Adenoviral-mediated gene therapy of human bladder cancer with antisense interleukin-8. Omni Rep. (2001) 8(5):955–964.
  • MORRISON RS: Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astrocytes. Biol. Chem. (1991) 266(2):728–734.
  • MORRISON RS, GIORDANO S, YAMAGUCHI F et al.: Basic fibroblast growth factor expression is required for clonogenic growth of human glioma cells.' NeuroscL Res. (1993) 34(5):502–509.
  • STAN AC, NEMATI MN, PIETSCH T, WALTER GF, DIETZ H: In vivoinhibition of angiogenesis and growth of the human U-87 malignant glial tumour by treatment with an antibody against basic fibroblast growth factor. Neurosurg. (1995) 82(6):1044–1052.
  • MURAI N, UEBA T,TAKAHASHI JA et al.: Apoptosis of human glioma cells M vitro and in vivo induced by a neutralizing antibody against human basic fibroblast growth factor. Neurosurg. (1996) 85(6):1072–1077.
  • TAKAHASHI JA, FUKUMOTO M, KOZAI Y et al.: Inhibition of cell growth and tumourigenesis of human glioblastoma cells by a neutralizing antibody against human basic fibroblast growth factor. FEBS Lett. (1991) 288(1-2):65–71.
  • FINCH PW, YEE LK, CHU MY et al.: Inhibition of growth factor mitogenicity and growth of tumour cell xenografts by a sulfonated distamycin A derivative. Pharmacology (1997) 55(6):269–278.
  • WELLSTEIN A, ZUGMAIER G, CALIFANO JA 3RD et al.: Tumour growth dependent on Kaposi's sarcoma-derived fibroblast growth factor inhibited by pentosan polysulfate.J. Nat! Cancer Inst. (1991) 83(10):716–720.
  • PLUM SM, HOLADAYJW, RUIZ A et al: Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumour development. Vaccine (2000) 19(9-10):1294–1303.
  • BAIRD A, SCHUBERT D, LING N, GUILLEMIN R: Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc. Nati Acad. Sci. USA (1988) 85(7):2324–2328.
  • BOTTARO DP, FORTNEY E, RUBIN JS, AARONSON SA: A keratinocyte growth factor receptor-derived peptide antagonist identifies part of the ligand binding site. J. Biol. Chem. (1993) 268(13):9180–9183.
  • FLOEGE J, OSTENDORF T,JANSSEN U et al.: Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. Pathol (1999) 154(1):169–179.
  • CAO B, SU Y, OSKARSSON M et al: Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumour activity in animal models. Proc. Nati Acad. Sci. USA (2001) 98(13):7443–7448.
  • CZUBAYKO F,LIAUDET-COOPMAN ED,AIGNER A et al: A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat. Med. (1997) 3(10):1137–1140.
  • MATSUDA K, MARUYAMA H, GUO F et al.: Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. (2001) 61(14):5562–5569.
  • HUNTER T: Oncoprotein networks. Cell (1997) 88(3):333–346.
  • ADJEI AA: Signal transduction pathway targets for anticancer drug discovery. Curr. Pharm. Des (2000) 6(4):361–378.
  • SAHNI M, AMBROSETTI DC, MANSUKHANI A et al.: FGF signalling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. (1999) 13(11):1361–1366.
  • AIKAWA T, SEGRE GV, LEE K: Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E-Cdk2. J. Biol. Chem. (2001) 276(31):29347–29352.
  • WESTWOOD G, DIBLING BC, CUTHBERT-HEAVENS D,BURCHILL SA: Basic fibroblast growth factor (bFGF)-induced cell death is mediated through a caspase-dependent and p53-independent cell death receptor pathway. Oncogene (2002) 21(5):809–824.
  • SCHWEIGERER L, NEUFELD G, GOSPODAROWICZ D: Basic fibroblast growth factor as a growth inhibitor forcultured human tumour cells. J. Clin. Invest.(1987) 80(5):1516–1520.
  • •Early report of FGF-mediated inhibition of tumour (Ewing's sarcoma) growth; prelude of things to come.
  • SMITS VA, VAN PEER MA,ESSERS MA et al.: Negative growth regulation of SK-N-MC cells by bEGF defines a growth factor-sensitive point in G2. J. Bid/. Chem. (2000) 275(25):19375–19381.
  • STURLA LM, WESTWOOD G, SELBY PJ, LEWIS IJ, BURCHILL SA: Induction of cell death by basic fibroblast growth factor in Ewing's sarcoma. Cancer Res. (2000) 60(21):6160–6170.
  • DUPLAN SM, THEORET Y,KENIGSBERG RL: Antitumour activity of fibroblast growth factors (FGEs) for medulloblastoma may correlate with FGF receptor expression and tumour variant. Clin. Cancer Res. (2002) 8(1):246–257.
  • DERRINGTON EA, DUFAY N, RUDKIN BB, BELIN MF: Human primitive neuroectodermal tumour cells behave as multipotent neural precursors in response to FGF2. Oncogene (1998) 17(13):1663–1672.
  • NIBU K, LI G, KAGA K,ROTHSTEIN JL: bEGF induces differentiation and death of olfactory neuroblastoma cells. Biochem. Biophys. Res. Commun. (2000) 279(1):172–180.
  • RAGUENEZ G, DESIRE L,LANTRUA V, COURTOIS Y: BCL-2 is upregulated in human SH-SY5Y neuroblastoma cells differentiated by overexpression of fibroblast growth factor 1. Biochem. Biophys. Res. Commun. (1999) 258(3):745–751.
  • ROCKOW S, TANG J, XIONG W, LI W: Nck inhibits NGF and basic FGF induced PC12 cell differentiation via mitogen-activated protein kinase-independent pathway. Oncogene (1996) 12(11):2351–2359.
  • ZHANG Y, WANG H,TORATANI S et al.: Growth inhibition by keratinocyte growth factor receptor of human salivary adenocarcinoma cells through induction of differentiation and apoptosis. Proc. Natl Acad. Sci. USA (2001) 98(20):11336–11340.
  • MATSUBARA A, KAN M, FENG S, MCKEEHAN WL: Inhibition of growth of malignant rat prostate tumour cells by restoration of fibroblast growth factorreceptor 2. Cancer Res. (1998) 58 (7):1509–1514.
  • FENG S, WANG F, MATSUBARA A, KAN M, MCKEEHAN WL: Fibroblast growth factor receptor 2 limits and receptor 1 accelerates tumorigenicity of prostate epithelial cells. Cancer Res. (1997) 57(23):5369–5378.
  • MCLESKEY SW, DING TY,LIPPMAN ME, KERN FG: MDA-MB-134 breast carcinoma cells overexpress fibroblast growth factor (FGF) receptors and are growth-inhibited by FGF ligands. Cancer Res. (1994) 54(2):523–530.
  • WANG H, RUBIN M, FENIG E et al: Basic fibroblast growth factor causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events. Cancer Res. (1997) 57(9):1750–1757.
  • EVES EM, SKOCZYLAS C, YOSHIDA K, ALNEMRI ES, ROSNER MR: FGF induces a switch in death receptor pathways in neuronal cells. Neurosci. (2001) 21(14):4996–5006.
  • REILAND J, RAPRAEGER AC: Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations. J. Cell Sci. (1993)105(Pt 4):1085–1093.
  • COLL-FRESNO PM, BATOZ M, TARQUIN S, BIRNBAUM D, COULIER F: Cytotoxic activity of a diptheria toidm/FGF6 mitotoxin on human tumour cell lines. Oncogene (1997) 14(2):243–247.
  • GAWLAK SL, PASTAN I, SIEGALL CB: Basic fibroblast growth factor-Pseudomonas exotwdn chimeric proteins; comparison with acidic fibroblast growth factor-Pseudomonas exotoidn. Bioconjug. Chem. (1993) 4(6):483–489.
  • SIEGALL CB, GAWLAK SL, CHACE DF, MERWIN JR, PASTAN I: In vivo activities of acidic fibroblast growth factor-Pseudomonas exotoxin fusion proteins. Bioconjug. Chem. (1994) 5(1):77–83.
  • DAVOL PA, FRACKELTON AR JR: Targeting human prostatic carcinoma through basic fibroblast growth factor receptors in an animal model: characterizing and circumventing mechanisms of tumour resistance. Prostate (1999) 40(3):178–191.
  • SCHMIDT A, MOCKEL B, ECK J et al.: Cytotoxic activity of recombinant bEGF-rViscumin fusion proteins. Biochem.Biophys. Res. Commun. (2000) 277(2):499–506.
  • FUTAMI J, SENO M, UEDA M, TADA H, YAMADA H: Inhibition of cell growth by a fused protein of human ribonuclease 1 and human basic fibroblast growth factor. Protein Engl. (1999) 12 (11):1013–1019.
  • DAVOL PA, GARZA S,FRACKELTON AR JR: Combining suramin and a chimeric toxin directed to basic fibroblast growth factor receptors increases therapeutic efficacy against human melanoma in an animal model. Cancer (1999) 86(9):1733–1741.
  • GU DL, GONZALEZ AM,PRINTZ MA et al.: Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumour activity in mice. Cancer Res. (1999) 59(11)2608–2614.
  • KLEEFF J, FUKAHT K, LOPEZ ME et al: Targeting of suicide gene delivery in pancreatic cancer cells via FGF receptors. Cancer Gene Ther. (2002) 9(6):522–532.
  • ROSENTHAL C, KARTHAUS M, GANSER A: New strategies in the treatment and prophylaxis of chemo- and radiotherapy-induced oral mucositis. Antibia Chemother. (2000) 50:115–132.
  • DANILENKO DM: Preclinical and early clinical development of keratinocyte growth factor, an epithelial-specific tissue growth factor. Toxicol. Pathol. (1999) 27(1):64–71.
  • BOOTH D, POTTEN CS: Protection against mucosal injury by growth factors and cytokines. Nat! Cancer Inst. Monogr. (2001) 29:16–20.
  • KONISHI H, OCHIYA T,SAKAMOTO H et al: Effective prevention of thrombocytopenia in mice using adenovirus-mediated transfer of HST-1 (FGF-4) gene. I Clin. Invest. (1995) 96(2):1125–1130.
  • OKUNIEFF P, ABRAHAM EH,MOINI M et al.: Basic fibroblast growth factor radioprotects bone marrow and not RIF1 tumour. Acta Oncol (1995) 34(3):435–438.
  • TAKAHAMA Y, OCHIYA T,TANOOKA H et al.: Adenovirus-mediated transfer of HST-1/FGF-4 gene protects mice from lethal irradiation. Oncogene (1999) 18(43):5943–5947.
  • MIND, TAYLOR PA,PANOSKALTSTS-MORTART A et al.:Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T cell reconstitution after bone marrow transplantation. Blood (2002) 99 (12) :4 5 92–4600.
  • YAMAMOTO H, OCHIYA T,TAMAMUSHI S et al: HST-1/FGF-4 gene activation induces spermatogenesis and prevents adriamycin-induced testicular toxicity. Oncogene (2002) 21(6)899–908.
  • DAVIES MM, BURKE D,CARNOCHAN P et al: Basic fibroblast growth factor infusion increases tumour vascularity, blood flow and chemotherapy uptake. Acta Oncol (2002) 41(1):84–90.
  • COLEMAN AB, MOMAND J, KANE SE: Basic fibroblast growth factor sensitizes NIH 3T3 cells to apoptosis induced by cisplatin. Mol. Phannacol (2000) 57(2)324–333.
  • FENIG E, LIVNAT T,SHARKON-POLAK S et al.: Basic fibroblast growth factor potentiates cisplatinum-induced cytotoxicity in MCF-7 human breast cancer cells. J. Cancer Res. Cilia. Oncol (1999) 125(10):556–562.
  • LEITH JT: Enhancement of thermal sensitivity of xenografted human DLD-2 tumours by administration of basic fibroblast growth factor. Radial Res. (1994) 138(1):139–142.
  • DING I, HUANG K, SNYDER ML et al.: Tumour growth and tumour radiosensitivity in mice given myeloprotective doses of fibroblast growth factors. Nat! Cancer Inst. (1996) 88(19):1399–1404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.