171
Views
22
CrossRef citations to date
0
Altmetric
Review

IL-20: a new target for the treatment of inflammatory skin disease

Pages 165-174 | Published online: 02 Mar 2005

Bibliography

  • STERN RS: The epidemiology of cutaneous disease. In: Fitzpatrick i Dermatology in General Medicine (5thFreedberg IM et al (Eds), McGraw-Hill, New York (1999)7–12.
  • PRINZ J, BRAUN-FALCO O, MEURER M et al.: Chimeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet (1991) 338:320–321.
  • NICOLAS JF, CHAMCHICK N, THIVOLET J et al.: CD4 antibody treatment of severe psoriasis. Lancet (1991) 338:321.
  • GOTTLIEB SL, GILLEAUDEAU P, JOHNSON R eta].: Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. (1995) 1:442–447.
  • GOTTLIEB AB, KRUEGER JG, WITTKOWSKI K et al: Psoriasis as a model for T cell-mediated disease: immunobiologic and clinical effects of treatment with multiple doses of efalizumab, an anti-CD1 la antibody. Arch. Dermatol (2002) 138:591–600.
  • KRUEGER GG: Selective targeting of T cell subsets: focus on alefacept - a remittive therapy for psoriasis. Expert Opin. Biol. Ther. (2002) 2:431–441.
  • WONG RL, WINSLOW CM, COOPER KD: The mechanisms of action of cyclosporin A in the treatment of psoriasis. Immunol Today (1993) 14:69–74.
  • BOS JD, WITKAMP L, ZONNEVALD IM etal.: Systemic tacrolimus (FK 506) is effective for the treatment of psoriasis in a double-blind, placebo-controlled study. The European FK 506 Multicentre Psoriasis Study Group. Arch. Dermatol (1996) 132:419–423.
  • WON YH, SAUDER DN, MCKENZIE RC: Cyclosporin A inhibits keratinocyte cytokine gene expression. Br. J. Dermatol (1994) 130:312–319.
  • KARASHIMA T, HACHISUKA H, SASAI Y: FK506 and cyclosporin A inhibit growth factor-stimulated human keratinocyte proliferation by blocking cells in the GO/G1 phases of the cell cycle. Dermatol Li. (1996) 12:246–254.
  • AL-DARAJI WI, GRANT KR, RYAN K et al.: Localization of calcineurin/NFAT in human skin and psoriasis and inhibition of calcineurin/NFAT activation in human keratinocytes by cyclosporin A. J. Invest. Dermatol (2002) 118:779–788.
  • BEER HD, GASSMANN MG, MUNZ B et al: Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J. Invest. Dermatol Symp. Proc. (2000) 5:34–39.
  • WERNER S, SMOLA H: Paracrine regulation of keratinocyte proliferation and differentiation. Trends Cell Biol. (2001) 11:143–146.
  • ANGEL P, SZABOWSKI A: Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochem. Pharmacol (2002) 64:949.
  • GRONE A: Keratinocytes and cytokines. Vet. Immunol Immunopathol (2002) 88:1–12.
  • BARNES PJ, KARIN M: Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl. J. Med. (1997) 336:1066–1071.
  • ZHANG G, GHOSH S: Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. ..J. Endotoxin Res. (2000) 6:453–457.
  • ROSETTE C, KARIN M: Ultraviolet lightand osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science (1996) 274:1194–1197.
  • MURPHY JE, ROBERT C, KUPPER TS: Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J. Invest. Dermatol (2000) 114:602–608.
  • •A review of the role of IL-1 in skin biology.
  • ALMAWI WY, ABOU JAOUDE MM, LI XC: Transcriptional and post-transcriptional mechanisms of glucocorticoid antiproliferative effects. Hematol Oncol (2002) 20:17–32.
  • TAYLOR PC: Anti-tumor necrosis factor therapies. Cun: Opin. Rheumatol (2001) 13:164–169.
  • DAYER JM, FEIGE U, EDWARDS CK IIIet al: Anti-interleukin-1 therapy in rheumatic diseases. Cun: Opin. Rheumatol (2001) 13:170–176.
  • BLUMBERG H, CONKLIN D, XU WF et al: Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell (2001) 104:9–19.
  • ••The principal description of the discoveryand biological effects of IL-20.
  • LEVY DE, LEE CK: What does Stat3 do? J. CM]. Invest. (2002) 109:1143–1148.
  • •A review of the biology of STAT-3.
  • SANO S, ITAMI S, TAKEDA K etal.: Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO (1999) 18:4657–4668.
  • O'FARRELL AM, LIU Y, MOORE KW et al.: IL-10 inhibits macrophage activation and proliferation by distinct signaling mechanisms: evidence for Stat3-dependent and -independent pathways. EMBO (1998) 17:1006–1018.
  • DUMOUTIER L, LEEMANS C, LEJEUNE D et al: Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J. Immunol (2001) 167:3545–3549.
  • FICKENSCHER H, HORS, KUPERS H et al.: The interleukin-10 family of cytokines. Trends Immunol (2002) 23:89–96.
  • ••A comprehensive review of the IL-10 familyof cytokines.
  • ESKDALE J, KUBE D, TESCH H et al.: Mapping of the human IL10 gene and further characterization of the 5 flanking sequence. Immunogenetics (1997) 46:120–128.
  • GALLAGHER G, DICKENSHEETS H, ESKDALE J etal.: Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun (2000) 1:442–450.
  • KNAPPE A, HORS, WITTMANN S etal.:Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with Herpesvirus saimiri. J. Viral (2000) 74:3881–3887.
  • DUMOUTIER L, VAN ROOST E, AMEYE G et al: IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun (2000) 1:488–494.
  • REDPATH S, GHAZAL P, GASCOIGNE NR: Hijacking and exploitation of IL-10 by intracellular pathogens. Trends Nlicrobiol. (2001) 9:86–92.
  • MOORE K W, DE WAAL MALEFYT R, COFFMAN R L et al.: Interleukin-10 and the interleukin-10 receptor. Ann. Rev Immunol. (2001) 19:683–765.
  • WOLK K, KUNZ S, ASADULLAH K et al.: Cutting edge: immune cells as sources and targets of the IL-10 family members? Immunol. (2002) 168:5397-5402.
  • ••A systematic study of the expression ofIL-10-related cytokine genes in human blood cells.
  • LIAO YC, LIANG WG, CHEN FW et al.: IL-19 induces production of IL-6 and TNF-a and results in cell apoptosis through TNF-a. j Immunol. (2002) 169:4288–4297.
  • PARRISH-NOVAK J, XU W, BRENDER T etal.: IL-19, IL-20, and IL-24 signal through two distinct receptor complexes: differences in receptor-ligand interactions mediate unique biological functions. j Biol. Chem. (2002). In Press.
  • DUMOUTIER L, VAN ROOST E, COLAU D et al.: Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc. Nati Acad. Sci. USA (2000) 97:10144–10149.
  • XIE MH, AGGARWAL S, HO WH et al.: Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. j Biol. Chem. (2000) 275:31335–31339.
  • KOTENKO SV, IZOTOVA LS, MIROCHNITCHENKO OV et al.: Identification of the functional IL-TIF (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta) is a shared component of both IL-10 and IL-TIF (IL-22) receptor complexes. j Biol. Chem. (2001) 276:2725–2732.
  • AGGARWAL S, XIE MH, MARUOKA M et al.: Acinar cells of the pancreas are a target of interleukin-22. j Interferon Cytokine Res. (2001) 21:1047–1053.
  • NAGEM R, COLAU D, DUMOUTIER L et al.: Crystal structure of recombinant human interleukin-22. Structure (Camb) (2002) 10:1051.
  • JIANG H, LIN JJ, SU ZZ etal.: Subtractionhybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene (1995) 11:2477–2486.
  • ZHANG R, TAN Z, LIANG P: Identification of a novel ligand-receptor pair constitutively activated by ras oncogenes. P Biol. Chem. (2000) 275:24436–24443.
  • JIANG H, SU ZZ, LIN JJ etal.: The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc. Natl. Acad. Sci. USA (1996) 93:9160–9165.
  • SARKAR D, SU ZZ, LEBEDEVA IV et al.: mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc. Natl. Acad. Sci. USA (2002) 99:10054–10059.
  • SU ZZ, MADIREDDI MT, LIN JJ etal.: The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc. Nati Acad. Sci. USA (1998) 95:14400–14405.
  • MHASHILKAR AM, SCHROCK RD, HINDI M etal.: Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol. Med. (2001) 7:271–282.
  • SAEKI T, MHASHILKAR A, SWANSON X et al.: Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene (2002) 21:4558–4566.
  • SOO C, SHAW WW, FREYMILLER E et al.: Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. J. Cell. Biochem. (1999) 74:1–10.
  • SCHAEFER G, VENKATARAMAN C, SCHINDLER U: Cutting edge: FISP (IL-4-induced secreted protein), a novel cytokine-like molecule secreted by Th2 cells. P Immunol. (2001) 166:5859–5863.
  • WANG M, TAN Z, ZHANG R et al.: Interleukin 24 (MDA-7/M0B-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. P Biol. Chem. (2002) 277:7341–7347.
  • CAUDELL EG, MUMM JB, POINDEXTER N et al.: The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. j Immunol. (2002) 168:6041–6046.
  • GARN H, SCHMIDT A, GRAU V et al.: IL-24 is expressed by rat and human macrophages. Immunobiology (2002) 205:321–334.
  • DUMOUTIER L, RENAULD JC: Viral and cellular interleukin-10 (IL-10)-related cytokines: from structures to functions. Eur. Cytokine Netw (2002) 13:5-15. LEJEUNE D, DUMOUTIER L, CONSTANTINESCU S etal.: Interleukin-22 (IL-22) activates the JAK/ STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. _J. Biol. Chem. (2002) 277:33676-33682. IL-22 signal transduction pathways.
  • XU W, PRESNELL SR, PARRISH-NOVAK J et al.: A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc. Nati Acad. Li. USA (2001) 98:9511–9516.
  • GRUENBERG BH, SCHOENEMEYER A, WEISS B et al.: A novel, soluble homologue of the human IL-10 receptor with preferential expression in placenta. Genes Immun (2001) 2:329-334. ALEXANDER WS: Suppressors of cytokine signalling (SOCS) in the immune system. Nat. Rev Immunol. (2002) 2:410-416. A comprehensive review of SOCS proteins.
  • STARR R, HILTON DJ: Negative regulation of the JAK/STAT pathway. Bioessays (1999) 21:47–52.
  • SEIDEL HM, LAMB P, ROSEN J: Pharmaceutical intervention in the JAK/ STAT signaling pathway. Oncogene (2000) 19:2645–2656.
  • THOMPSON JE, CUBBON RIVI, CUMMINGS RT et al.: Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg. Med. Chem. Lett. (2002) 12:1219–1223.
  • YAMASHITA N, KAZUO SY, KITAMURA M etal.: Cytovaricin B, a new inhibitor of JAK-STAT signal transduction produced by Streptomyces torulosus. Antibiot. (Tokyo) (1997) 50:440–442.
  • MEYDAN N, GRUNBERGER T, DADI H et al.: Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature (1996) 379:645–648.
  • SUDBECK EA, LIU XP, NARLA RK et al:Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin Cancer Res. (1999) 5:1569–1582.
  • DRUKER BJ, SAWYERS CL, KANTARJIAN H et al.: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl. j Med. (2001) 344:1038–1042.
  • KISSELEVA T, BHATTACHARYA S, BRAUNSTEIN J et al: Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene (2002) 285:1–24.
  • •Extensive review of JAK/STAT signalling.
  • RILEY JK, TAKEDA K, AKIRA S et al.: Interleukin-10 receptor signaling through the JAK—STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. _J. Biol. Chem. (1999) 274:16513–16521.
  • TAKEDA K, NOGUCHI K, SHI W et al: Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Nati Acad. Sri. USA (1997) 94:3801–3804.
  • RODIG SJ, MERAZ MA, WHITE JM et al.: Disruption of the Jakl gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Ce// (1998) 93:373–383.
  • SHIMODA K, KATO K, AOKI K et al.: Tyk2 plays a restricted role in IFN-a signaling, although it is required for IL-12-mediated T cell function. Immunity (2000) 13:561–571.
  • FOSS FM: Interleukin-2 fusion toxin: targeted therapy for cutaneous T cell lymphoma. Ann. NY Acad. Sci. (2001) 941:166–176.
  • LEBEDEVA I, STEIN CA: Antisense oligonucleotides: promise and reality. Ann. Rev Pharmacol. Toxicol. (2001) 41:403–419.
  • HANNON GJ: RNA interference. Nature (2002) 418:244–251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.