243
Views
89
CrossRef citations to date
0
Altmetric
Review

MAPKs: new targets for neurodegeneration

&
Pages 187-200 | Published online: 02 Mar 2005

Bibliography

  • NICHOLSON DW: Apoptosis - baiting death inhibitors. Nature (2001) 410:33–34.
  • ROY S, NICHOLSON DW: Cross-talk in cell death signaling. J. Exp. Med. (2000) 192:F21–F25.
  • SALVESEN GS, DUCKETT CS: IAP proteins: blocking the road to death's door. Nat. Rev Mal Cell Biol. (2002) 3:401–410.
  • •Excellent recent review of cell death focusing on inhibitors of apoptosis.
  • XIA Z, DICKENS M, RAINGEAUD J, DAVIS RJ, GREENBERG ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science (1995) 270:1326–1331.
  • ••First report of the 'stress-activatedpathways' being activated and MAPK pathways being down-regulated in PC12 cells in response to NGF withdrawal. A key paper that initiated a field of research.
  • CHANG L, KARIN M: Mammalian MAP kinase signalling cascades. Nature (2001) 410:37–40.
  • •Review of MAPK signalling pathways.
  • COBB MH: MAP kinase pathways. Frog. Biophys. Mal Biol. (1999) 19:479–500.
  • ROBINSON MJ, COBB MH: Mitogen-activated protein kinase pathways. Curr. Opin. Cell. Biol. (1999) 9:180–186.
  • SEGER R, KREBS EG: The MAPK signaling cascade. FASEB J. (1995) 9:726–735.
  • PETTMANN B, HENDERSON CE: Neuronal cell death. Neuron (1998) 20:633–647.
  • STANCIU M, WANG Y, KENTOR R etal.: Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. (2000) 275:12200–12206.
  • FAVATA MF, HORIUCHI KY, MANOS EJ etal.: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. Bia. Chem. (1998) 273:18623–18632.
  • SATOH T, NAKATSUKA D, WATANABE Y et al.: Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci. Lett. (2000) 288:163–166.
  • SEO SR, CHONG SA, LEE SI et al: Zn2+-induced ERK activation mediated by reactive oxygen species causes cell death in differentiated PC12 cells. J. Neurochem. (2001) 78:600–610.
  • ALESSI DR, CUENDA A, COHEN P, DUDLEY DT, SALTIEL AR: PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. (1995) 270:27489–27494.
  • FERRER I, BLANCO R, CARMONA M: Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mal Brain Res. (2001) 94:48–58.
  • ALESSANDRINI A, NAMURA S, MOSKOWITZ MA, BONVENTRE JV: MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc. Natl. Acad. Sd. USA (1999) 96:12866–12869.
  • NAMURA S, IIHARA K, TAKAMI S etal.:Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc. Natl. Acad. Sd. USA (2001) 98:11569–11574.
  • SLEVIN M, KRUPINSKI J, SLOWIK Aet al.: Activation of MAP kinase (ERK-1/ ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke. Neuroreport (2000) 11:2759–2764.
  • FERRER I, BLANCO R, CARMONA M et al.: Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies. J. Neural Transm. (2001) 108:1383–1396.
  • KULICH SM, CHU CT: Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson's disease. P Neuroc(2001) 77:1058–1066.
  • MURRAY B, ALESSANDRINI A, COLE AJ, YEE AG, FURSHPAN EJ: Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc. Natl. Acad. Sci. USA (1998) 95:11975–11980.
  • PERRY G, RODER H, NUNOMURA A, TAKEDA A etal.: Activation of neuronal extracellular receptor kinase (ERIK) in Alzheimer disease links oxidative stress to abnormal tau phosphorylation. Neuroreport (1999) 10:2411–2415.
  • FERRER I, BLANCO R, CARMONA M et al: Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. (2001) 11:144–158.
  • HAN J, LEE JD, BIBBS L, ULEVITCH RJ: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science (1994) 265:808–811.
  • LEE JC, LAYDON JT, MCDONNELL PC et al: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature (1994) 372:739–746.
  • JIANG Y, GRAM H, ZHAO M et al: Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38& P Biol. Chem. (1997) 272:30122–30128.
  • LI Z, JIANG Y, ULEVITCH RJ, HAN J: The primary structure of p38y a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun. (1996) 228:334–340.
  • WANG XS, DIENER K, MANTHEY CL et al: Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. _J. Biol. Chem. (1997) 272:23668–23674.
  • IRVING EA, BARONE FC, REITH AD, HADINGHAM SJ, PARSONS AA: Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Mal Brain Res. (2000) 77:65–75.
  • WALTON KM, DIROCCO R, BARTLETT BA etal.: Activation of p38MAPK in microglia after ischemia. P Neurachern. (1998) 70:1764–1767.
  • ONO K, HAN J: The p38 signal transduction pathway activation and function. Cell Signal (2000) 12:1–13.
  • HEIDENREICH KA, KUMMER JL: Inhibition of p38 mitogen-activated protein kinase by insulin in cultured fetal neurons. j. Biol. Chem. (1996) 271:9891–9894.
  • HORSTMANN S, KAHLE PJ, BORASIO GD: Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro. j Neurosci. Res. (1998) 52:483–490.
  • KAWASAKI H, MOROOKA T, SHIMOHAMA S etal.: Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. P Biol. Chem. (1997) 272:18518–18521.
  • CHENG HL, FELDMAN EL: Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-1. _J. Biol. Chem. (1998) 273:14560–14565.
  • HARPER SJ, LOGRASSO P: Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal (2001) 13:299–310.
  • MIELKE K, HERDEGEN T: JNK and p38 stress kinases - degenerative effectors of signal-transduction-cascades in the nervous system. Prog. Neurobiol (2000) 61:45–60.
  • ••Comprehensive review of SAPK signallingin the nervous system.
  • MIELKE K, BRECHT S, DORST A, HERDEGEN T: Activity and expression of JNK1, p38 and erk kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in the adult rat brain following kainate-induced seizures. Neuroscience (1999) 91:471–483.
  • MARUYAMA M, SUDO T, KASUYA Y et al.: Immunolocalization of p38 MAP kinase in mouse brain. Brain Res. (2000) 887:350–358.
  • HENSLEY K, FLOYD RA, ZHENG NY et al.: p38 kinase is activated in the Alzheimer's disease brain. j Neurochem. (1999) 72:2053–2058.
  • KUMMER JL, RAO PK, HEIDENREICH KA: Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol. Chem. (1997) 272:20490–20494.
  • WATSON A, EILERS A, LALLEMAND D et al.: Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. Neurosci. (1998) 18:751–762.
  • HARADA J, SUGIMOTO M: An inhibitor of p38 and JNK MAP kinases prevents activation of caspase and apoptosis of cultured cerebellar granule neurons. him I. Pharmacol (1999) 79:369–378.
  • KIKUCHI M, TENNETI L, LIPTON SA: Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. j Neurosci. (2000) 20:5037–5044.
  • •Good paper showing activation of p38 in retinal ganglion cells in response to optic nerve axotomy.
  • UNDERWOOD DC, OSBORN RR, BOCHNOWICZ S et al: SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am. j Physiol Lung Cell. Mal Physiol (2000) 279:L895–L902.
  • WARD KW, PROKSCH JW, AZZARANO LM et al: SB-239063, a potent and selective inhibitor of p38 map kinase: preclinical pharmacokinetics and species-specific reversible isomerization. Pharmaceut. Res. (2001) 18:1336–1344.
  • LEGOS JJ, MCLAUGHLIN B, SKAPER SD et al.: The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Eur j Pharmacol (2002) 447:37–42.
  • BARONE FC, IRVING EA, RAY AM et al: SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. j Pharm. Exp. Ther (2001) 296:312–321.
  • ••First publication of the effect of a specificp38 inhibitor in a model of cerebral ischaemia.
  • LEGOS JJ, ERHARDT JA, WHITE RF et al: SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res. (2001) 892:70–77.
  • LIN S, ZHANG Y, DODEL R et al: Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci. Lett. (2001) 315:61–64.
  • •Paper showing that minocycline acts by inhibiting p38 MAPK.
  • DU Y, MA Z, LIN S et al: Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl. Acad. Sci USA (2001) 98:14669–14674.
  • VAN DEN BL, TILKIN P, LEMMENS G, ROBBERECHT W: Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport (2002) 13:1067–1070.
  • ZHU S, STAVROVSKAYA IG, DROZDA M et al.: Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature (2002) 417:74–78.
  • CHEN M, ONA VO, LI M et al: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. (2000) 6:797–801.
  • •This paper implicates caspases as the targets of minocycline.
  • SANCHEZ-MEJIA RO, ONA VO, LI M, FRIEDLANDER RIVI: Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery (2001) 48:1393–1399.
  • YRJANHEIKKI J, TIKKA T, KEINANEN R etal.: A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl. Acad. Li. USA (1999) 96:13496–13500.
  • YRJANHEIKKI J, KEINANEN R, PELLIKKA M et al: Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Li. USA (1998) 95:15769–15774.
  • TIKKA T, FIEBICH BL, GOLDSTEINS G, KEINANEN R, KOISTINAHO J: Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. Neurosci. (2001) 21:2580–2588.
  • MOHIT AA, MARTIN JH, MILLER CA: p49 (3F12) kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron (1995) 14:67–78.
  • GIASSON BI, MUSHYNSKI WE: Aberrant stress-induced phosphorylation of perikaryal neurofilaments. I Biol. Chem. (1996) 271:30404–30409.
  • ZENTRICH E, HAN SY, PESSOA BL, BUTTERFIELD L, HEASLEY LE: Collaboration of JNKs and ERKs in nerve growth factor regulation of the neurofilament light chain promoter in PC12 cells. J. Biol. Chem. (2002) 277:4110–4118.
  • KUAN C: Jun kinase signaling and caspase-3 activation in neuronal apoptosis in ischemia-hypoxia. 31st Annual Meeting of the Society for Neuroscience, San Diego, California, USA. Soc. Neurosci. Abs. (2001) 27:30.
  • MORISHIMA Y, GOTOH Y, ZIEG J et al: Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. j Neurosci. (2001) 21:7551–7560.
  • •Analysis of An-induced apoptotic signalling pathways in primary neuronal cultures derived from JNK-31- mice.
  • BRUCKNER SR, TAMMARIELLO SP, KUAN CY et al.: JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons. I Neurochem. (2001) 78:298–303.
  • YANG DD, KUAN CY, WHITMARSH AJ et al.: Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature (1997) 389:865–870.
  • ••A JNK-3 knockout mouse shows decreasedneuronal death and seizure activity following kainate administration.
  • TROY CM, RABACCHI SA, XU Z et al: 3-amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. Neurochem. (2001) 77:157–164.
  • BOZYCZKO CD, O'KANE TM, WU ZL et al: CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with AP-induced cortical neuron apoptosis. j Neurochem. (2001) 77:849–863.
  • WEI W, NORTON DD, WANG X, KUSIAK JW: A13 17-42 in Alzheimer's disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain (2002) 125:2036–2043.
  • PASSER B, PELLEGRINI L, RUSSO C et al: Generation of an apoptotic intracellular peptide by (gamma)-secretase cleavage of Alzheimer's amyloid (3) protein precursor. j Alzheimer's Dis. (2000) 2:289–301.
  • DICKENS M, ROGERS JS, CAVANAGH J et al.: A cytoplasmic inhibitor of the JNK signal transduction pathway. Science (1997) 277:693–696.
  • SCHEINFELD MH, RONCARATI R, VITO P et al.: Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP). j. Biol. Chem. (2002) 277:3767–3775.
  • KINOSHITA A, WHELAN CM, BEREZOVSKA O, HYMAN BT: The 7 secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. j Biol. Chem. (2002) 277:28530–28536.
  • BUEE-SCHERRER V, GOEDERT M: Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett (2002) 515:151–154.
  • ZHU X, ROTTKAMP CA, BOUX H, TAKEDA A et al.: Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. j Neuropathol Exp. Neural. (2000) 59:880–888.
  • ZHU X, RAINA AK, ROTTKAMP CA et al.: Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. j. Neurochern. (2001) 76:435–441.
  • ATZORI C, GHETTI B, PIVA R et al: Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. Neuropathol Exp. Neural. (2001) 60:1190–1197.
  • SAVAGE MJ, LIN YG, CIALLELLA JR,FLOOD DG, RICHARD W: Activation of c-Jun N-terminal kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. j Neurosci. (2002) 22:3376–3385.
  • GEARAN T, CASTILLO OA, SCHWARZSCHILD MA: The parkinsonian neurotoxin, MPP+ induces phosphorylated c-Jun in dopaminergic neurons of mesencephalic cultures. Parkinsonism Relat. Disord. (2001) 8:19–22.
  • CHUN HS, GIBSON GE, DEGIORGIO LA et al: Dopaminergic cell death induced by MPPH, oxidant and specific neurotoxicants shares the common molecular mechanism. j Neurochem. (2001) 76:1010–1021.
  • CHOI WS, YOON SY, OH TH et al: Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP*-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. j Neurosci. Res. (1999) 57:86–94.
  • VAUDANO E, ROSENBLAD C, BJORKLUND A: Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor. Eur. j Neurosci. (2001) 13:1–14.
  • SAPORITO MS, THOMAS BA, SCOTT RW: MPTP activates c-Jun NH2-terminal kinase (JNK) and its upstream regulatory kinase MIKK4 in nigrostriatal neurons in vivo. I Neurochem. (2000) 75:1200–1208.
  • ••Paper from the Cephalon group showingthat JNK is activated in the nigrostriatal system following a single injection of MPTP.
  • XIA XG, HARDING T, WELLER M et al.: Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc. Natl. Acad. Sci. USA (2001) 98:10433–10438.
  • ••One of two papers (see 1851) publishedaround the same time, showing that inhibiting the JNK pathway using viral gene transfer methods inhibits both JNK activation and rescues neuronal cell loss. In this paper, JIP-1 scaffold protein was overexpressed in the MPTP model of PD.
  • SAPORITO MS, BROWN EM, MILLER MS, CARSWELL S: CEP-1347/ KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. j. PharmacoL Esp. Ther. (1999) 288:421–427.
  • ••Paper from the Cephalon group showingthat CEP-1347 inhibits MPTP-induced dopaminergic neuronal cell death.
  • CROCKER SJ, LAMBA WR, SMITH PD et al.: c-Jun mediates axotomy-induced dopamine neuron death PI vivo Proc. Natl. Acad. Sci. USA (2001) 98:13385–13390.
  • ••One of two papers (see 1831) showing thatexpression of a dominant-negative version of c-Jun in the nigrostriatal system protects against axotomy-induced cell death.
  • GARCIA M, VANHOUTTE P, PAGES C et al.: The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module. j. Neurosci. (2002) 22:2174–2184.
  • LIU YF: Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. j. Biol. Chem. (1998) 273:28873–28877.
  • LADIWALA U, LI H, ANTEL JP, NALBANTOGLU J: p53 induction by tumor necrosis factor-a and involvement of p53 in cell death of human oligodendrocytes. I Neurochem. (1999) 73:605–611.
  • ZHANG P, HOGAN EL, BRAT NR: Activation of JNK/SAPK in primary glial cultures: II. Differential activation of kinase isoforms corresponds to their differential expression. Neurochem. Res. (1998) 23:219–225.
  • ZHANG P, MILLER BS, ROSENZWEIG SA, BHAT NR: Activation of C-jun N-terminal kinase/stress-activated protein kinase in primary glial cultures.Neurosci. Res. (1996) 46:114–121.
  • LIU HN, GIASSON BI, MUSHYNSKI WE, ALMAZAN G: AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and caspase-3. I Neurochem. (2002) 82:398–409.
  • BONETTI B, STEGAGNO C, CANNELLA B etal.: Activation of NF-1cI3 and c-jun transcription factors in multiple sclerosis lesions - implications for oligodendrocyte pathology. Am. j Pathol. (1999) 155:1433–1438.
  • HERDEGEN T, CLARET FX, KALLUNKI T et al.: Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. I Neurosci. (1998) 18:5124–5135.
  • SUGINO T, NOZAKI K, TAKAGI Y etal.: Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. I Neurosci. (2000) 20:4506–4514.
  • TAKAGI Y, NOZAKI K, SUGINO T, HATTORI I, HASHIMOTO N: Phosphorylation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase after transient forebrain ischemia in mice. Neurosci. Lett. (2000) 294:117–120.
  • GU Z, JIANG Q, ZHANG G: Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance. Neuroreport (2001) 12:3487–3491.
  • GU Z, JIANG Q, ZHANG G: c-Jun N-terminal kinase activation in hippocampal CA1 region was involved in ischemic injury. Neuroreport (2001) 12:897–900.
  • SHACKELFORD DA, YEH RY: Differential effects of ischemia and reperfusion on c-Jun N-terminal kinase isoform protein and activity. Md. Brain Res. (2001) 94:178–192.
  • •Effects on JNK activation in a spinal cord model of ischaemia.
  • HAYASHI T, SAKAI K, I, SASAKI C etal.: c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci. Lett. (2000) 284:195–199.
  • RAYMON HK, OMHOLT PE, CELERIDAD MT et al.: The JNK inhibitor, 5PC9766 is efficacious in models of epilepsy and stroke. 31st Ammal Meeting of the Society for Neuroscience, San Diego, California, USA. Soc. Neurosci. Abs. (2001) 27:1877.
  • •First report to demonstrate the effect of Signal/Celgene's JNK inhibitor in models of stroke and epilepsy.
  • COHEN P: Protein kinases - the major drug targets of the twenty-first century? Nat. Rev Drug Discov. (2002) 1:309–315.
  • ••Extensive review of kinase inhibitorscurrently in clinical development.
  • BILSLAND J, ROY S, XANTHOUDAKIS S et al.: Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons. I Neurosci. (2002) 22:2637–2649.
  • TANG G, MINEMOTO Y, DIBLING B et al.: Inhibition of JNK activation through NF-1c13 target genes. Nature (2001) 414:313–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.