149
Views
28
CrossRef citations to date
0
Altmetric
Review

Rho GTPases as therapeutic targets for the treatment of inflammatory diseases

&
Pages 583-592 | Published online: 02 Mar 2005

Bibliography

  • HORUK R: Chemokine receptors. Cytokine Growth Factor Rev (2001) 12:313–335.
  • ZEILHOFER HU, SCHORR W: Role of interleukin-8 in neutrophil signaling. Curr. Opin. Hematol (2000) 7:178–182.
  • MUKAIDA N: Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. hat. J. Hematol (2000) 72:391–398.
  • KEATES S, SOUGIOULTZIS S, KEATES AC et al: cag+ Helicobacter pylori induce transactivation of the epidermal growth factor receptor in AGS gastric epithelial cells. J. Biol. Chem. (2001) 276:48127–48134.
  • MAHIDA YR, MAKH S, HYDE S, GRAY T, BORRIELLO SP: Effect of Clostridium &Male toxin A on human intestinal epithelial cells: induction of interleukin 8 production and apoptosis after cell detachment. Gut (1996) 38:337–347.
  • ZHAO D, KUHNT-MOORE S, ZENG H et al.: Substance P-stimulated interleukin-8 expression in human colonic epithelial cells involves Rho family small GTPases. Biochem. (2002) 368:665–672.
  • ZHAO D, KEATES AC, KUHNT-MOORE S, MOYER MP, KELLY CP, POTHOULAKIS C: Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J. Biol. Chem. (2001) 276:44464–44471.
  • ZHAO D, KUHNT-MOORE S, ZENG H, WU JS, MOYER MP, POTHOULAKIS C: Neurotensin stimulates interleukin-8 expression in human colonic epithelial cells through Rho GTPase-mediated NFicB pathways. Jim. J. Physic] Cell Physic] (2003) 12:12.
  • POTHOULAKIS C, CASTAGLIUOLO I, LAMONT JT et al: CP-96, 345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc. Natl. Acad. Sci. USA (1994) 91:947–951.
  • CASTAGLIUOLO I, RIEGLER M, PASHA A et al.: Neurokinin-1 (NK-1) receptor is required in Clostridium difficlle-induced enteritis. Clin. Invest. (1998) 101:1547–1550.
  • CASTAGLIUOLO I, WANG CC, VALENICK L et al.: Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J. Clin. Invest. (1999) 103:843–849.
  • HU DE, HORI Y, FAN TP: Interleukin-8 stimulates angiogenesis in rats. Inflammation (1993) 17:135–143.
  • ARENBERG DA, KUNKEL SL, POLVERINI PJ, GLASS M, BURDICK MD, STRIETER RM: Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J. Gin. Invest. (1996) 97:2792–2802.
  • MCDONALD DM: Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am. J. Respir. Crit. Care Med. (2001) 164:S39–S45.
  • WALSH DA, PEARSON CI: Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritic Res. (2001) 3:147–153.
  • ROEBUCK KA: Regulation of interleukin-8gene expression. Interferon Cytokine Res. (1999) 19:429–438.
  • HOFFMANN E, DITTRICH-BREIHOLZ O, HOLTMANN H, KRACHT M: Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. (2002) 72:847–855.
  • •This review article summarises current knowledge of how IL-8 production is regulated.
  • KASAHARA T, MUKAIDA N, YAMASHITA K, YAGISAWA H, AKAHOSHI T, MATSUSHIMA K: IL-1 and TNF-a induction of IL-8 and monocyte chemotactic and activating factor (MCAF) mRNA expression in a human astrocytoma cell line. Immunology (1991) 74:60–67.
  • WINZEN R, KRACHT M, RITTER B et al: The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J. (1999) 18:4969–4980.
  • HOLTMANN H, WINZEN R, HOLLAND P et al.: Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine-or stress-activated signal transduction pathways. Ma Cell. Biol. (1999 19:6742–6753.
  • JIJON HB, PANENKA WJ, MADSEN KL, PARSONS HG: MAP kinases contribute to IL-8 secretion by intestinal epithelial cells via a posttranscriptional mechanism. Am. J. Physic] Cell Physiol (2002) 283:C31–C41.
  • TEBO J, DER S, FREVEL M, KHABAR KS, WILLIAMS BR, HAMILTON TA: Heterogeneity in control of mRNA stability by AU rich elements. J. Biol. Chem. (2003) 28:28.
  • FREVEL MA, BAKHEET T, SILVA AM, HISSONG JG, KHABAR KS, WILLIAMS BR: p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Ma Cell. Biol. (2003) 23:425–436.
  • KUNSCH C, ROSEN CA: NF-icB subunit-specific regulation of the interleukin-8 promoter. Ma Cell. Biol. (1993) 13:6137–6146.
  • MATSUSAKA T, FUJIKAWA K, NISHIO Y et al.: Transcription factors NF-1L6 and NF-icB synergistically activate transcription of the inflammatory cytokines, 589 interleukin 6 and interleukin 8. Proc. Nati Acad. Sd. USA (1993) 90:10193–10197.
  • STEIN B, BALDWIN AS Jr: Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-icB. Mol. Cell. Biol. (1993) 13:7191–7198.
  • WU GD, LAI EJ, HUANG N, WEN X: Oct-1 and CCAAT/enhancer-binding protein (C/EBP) bind to overlapping elements within the interleukin-8 promoter. The role of Oct-1 as a transcriptional repressor. J. Biol. Chem. (1997) 272:2396–2403.
  • TRAENCKNER EB, PAHL HL, HENKEL T, SCHMIDT KN, WILK S, BAEUERLE PA: Phosphorylation of human IicB-a on serines 32 and 36 controls IicB-a proteolysis and NF-icB activation in response to diverse stimuli. EMBO J. (1995) 14:2876–2883.
  • RODRIGUEZ MS, WRIGHT J, THOMPSON J et al.: Identification of lysine residues required for signal-induced ubiquitination and degradation of IicB-a in vivo. Oncogene (1996) 12:2425–2435.
  • MERCURIO F, ZHU H, MURRAY BW et al.: IKK-1 and IKK-2: cytokine-activated IicB kinases essential for NF-icB activation. Science (1997) 278:860–866.
  • SAKURAI H, CHIBA H, MIYOSHI H, SUGITA T, TORIUMI W: IicB kinases phosphorylate NF-icB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. (1999) 274:30353–30356.
  • ZHONG H, VOLL RE, GHOSH S: Phosphorylation of NF-icB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell (1998) 1:661–671.
  • WANG D, WESTERHEIDE SD, HANSON JL, BALDWIN AS Jr: Tumor necrosis factor a-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. (2000) 275:32592–32597.
  • ROMASHKOVA JA, MAKAROV SS: NF-icB is a target of AKT in anti-apoptotic PDGF signalling. Nature (1999) 401:86–90.
  • OZES ON, MAYO LD, GUSTIN JA, PFEFFER SR, PFEFFER LM, DONNER DB: NF-icB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature (1999) 401:82–85.
  • SIZEMORE N, LEUNG S, STARK GR: Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-icB p65/Re1A subunit. Mol. Cell. Biol. (1999) 19:4798–4805.
  • SUYANG H, PHILLIPS R, DOUGLAS I, GHOSH S: Role of unphosphorylated. newly synthesized IxBI3 in persistent activation of NF-icB. Mol. Cell. Biol. (1996) 16:5444–5449.
  • CHEN LF, MU Y, GREENE WC: Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-icB. EMBO (2002) 21:6539–6548.
  • CHEN L, FISCHLE W, VERDIN E, GREENE WC: Duration of nuclear NF-icB action regulated by reversible acetylation. Science (2001) 293:1653–1657.
  • HIPP MS, URBICH C, MAYER P et al: Proteasome inhibition leads to NF-icB-independent IL-8 transactivation in human endothelial cells through induction of AP-1. Eur. Immunol. (2002) 32:2208–2217.
  • PULVERER BJ, KYRIAKIS JM, AVRUCH J, NIKOLAKAKI E, WOODGETT JR: Phosphorylation of c-jun mediated by MAP kinases. Nature (1991) 353:670–674.
  • FROST JA, GEPPERT TD, COBB MH, FERAMISCO JR: A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras. phorbol 12-myristate 13-acetate, and serum. Proc. Nati Acad. Sci. USA (1994) 91:3844–3848.
  • DERIJARD B, HIBI M, WU IH et al.: JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell (1994) 76:1025–1037.
  • DENG T, KARIN M: c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature (1994) 371:171–175.
  • HIPSKIND RA, RAO VN, MUELLER CG, REDDY ES, NORDHEIM A: Ets-related protein Elk-1 is homologous to the c-fos regulatory factor p62TCE Nature (1991) 354:531–534.
  • WHITMARSH AJ, YANG SH, SU MS, SHARROCKS AD, DAVIS RJ: Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol. Cell. Biol. (1997) 17:2360–2371.
  • LI J, KARTHA S, IASVOVSKAIA S et al.:Regulation of human airway epithelial cell IL-8 expression by MAP kinases. Am. 1 Physiol. Lung Cell. Mol. Physiol. (2002) 283:L690–L699.
  • O'BRIEN D, O'CONNOR T, SHANAHAN F, O'CONNELL J: Activation of the p38 MAPK and ERK1/2 pathways is required for Fas-induced IL-8 production in colonic epithelial cells. Ann. NY Acad. Sci. (2002) 973:161–165.
  • BHATTACHARYYA A, PATHAK S, DATTA S, CHATTOPADHYAY S, BASU J, KUNDU M: Mitogen-activated protein kinases and nuclear factor-lcB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. Biochem. (2002) 368:121–129.
  • TAKAI Y, SASAKI T, MATOZAKI T: Small GTP-binding proteins. Physiol. Rev (2001) 81:153–208.
  • RIDLEY AJ: Rho family proteins: coordinating cell responses. Trends Cell Biol. (2001) 11:471–477.
  • QUALMANN B, MELLOR H: Regulation of endocytic traffic by Rho GTPases. Biochem. 1 (2003) 371\(Pt 2):233–241.
  • LIPSCHUTZ JH, MOSTOV KE: Exocytosis: the many masters of the exocyst. Curt-. Biol. (2002) 12:R212–R214.
  • ETIENNE-MANNEVILLE S, HALL A: Rho GTPases in cell biology. Nature (2002) 420:629–635.
  • OLOFSSON B: Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell. Signal. (1999) 11:545–554.
  • SCHMIDT A, HALL A: Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. (2002) 16:1587–1609.
  • BISHOP AL, HALL A: Rho GTPases and their effector proteins. Biochem. (2000) 348(Pt 2):241–255.
  • ••This excellent review provides detailedinformation about the cellular functions of Rho family small GTPases and how these functions are mediated through their respective effector molecules.
  • DEBANT A, SERRA-PAGES C, SEIPEL K et al.: The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Nati Acad. Sci. USA (1996) 93:5466–5471.
  • ASPENSTROM P: Effectors for the Rho GTPases. Curr: Opin. Cell Biol. (1999) 11:95–102.
  • AKTORIES K: Clostridium botulinum ADP-ribosyltransferase C3. In: Bacterial Toxins: Tools M Cell Biology and Pharmacology Aktories K (Ed.), Chapman and Hall, Weinheim (1997) 61.
  • AKTORIES KS, SCHMIDT G, HOFMANN F: GTPases targetted by bacterial toxins. In: GTPases. Hall A (Ed.), Oxford University Press, Oxford (2000) 311–331.
  • SCHMITZ AA, GOVEK EE, BOTTNER B, VAN AELST L: Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. (2000) 261:1–12.
  • CHEN LY, ZURAW BL, LIU FT, HUANG S, PAN ZK: IL-1 receptor-associated kinase and low molecular weight GTPase RhoA signal molecules are required for bacterial lipopolysaccharide-induced cytokine gene transcription. J. Immunol (2002) 169:3934–3939.
  • HIPPENSTIEL S, SOETH S, KELLAS B et al.: Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood (2000) 95:3044–3051.
  • HIPPENSTIEL S, SCHMECK B, SEYBOLD J, KRULL M, EICHEL-STREIBER C, SUTTORP N: Reduction of tumor necrosis factor-a (TNF-a) related nuclear factor-KB (NE-0) translocation but not inhibitor K-B (Ilc-B)-degradation by Rho protein inhibition in human endothelial cells. Biochem. Pharmacol (2002) 64:971–977.
  • PAN ZK, YE RD, CHRISTIANSEN SC, JAGELS MA, BOKOCH GM, ZURAW BL: Role of the Rho GTPase in bradykinin-stimulated nuclear factor-KB activation and IL-1I3 gene expression in cultured human epithelial cells. J. Immunol (1998) 160:3038–3045.
  • PERONA R, MONTANER S, SANIGER L, SANCHEZ-PEREZ I, BRAVO R, LACAL JC: Activation of the nuclear factor-KB by Rho, CDC42 and Rac-1 proteins. Genes Dev. (1997) 11:463–475.
  • •This is the first report to demonstrate that activation of Rho A, Racl and CDC42 can stimulate NF-KB-dependent gene expression.
  • FROST JA, SWANTEK JL, STIPPEC S, YIN MJ, GAYNOR R, COBB MH: Stimulation of NFicB activity by multiple signaling pathways requires PAK1. Biol Chem. (2000) 275:19693–19699.
  • SE GAIN JP, RAINGEARD DE LA BLETIERE D, SAUZEAU V et al: Rho kinase blockade prevents inflammation via nuclear factor KB inhibition: evidence in Crohn's disease and experimental colitis. Gastroenterology (2003) 124:1180–1187.
  • •This original work provides solid evidence that inhibition of Rho kinase by a specific pharmacological Rho kinase inhibitor significantly attenuated NF-icB activation and intestinal inflammation in an experimental model of colitis.
  • MONTANER S, PERONA R, SANIGER L, LACAL JC: Multiple signalling pathways lead to the activation of the nuclear factor KB by the Rho family of GTPases. Biol. Chem. (1998) 273:12779–12785.
  • ARBIBE L, MIRA JP, TEUSCH N et al.: Toll-like receptor 2-mediated NF-icB activation requires a Racl-dependent pathway. Nat. Immunol (2000) 1:533–540.
  • DREIKHAUSEN U, VARGA G, HOFMANN F et al.: Regulation by rho family GTPases of IL-1 receptor induced signaling: C3-like chimeric toxin and Clostridium difficile toxin B inhibit signaling pathways involved in IL-2 gene expression. Eur. Immunol (2001) 31:1610–1619.
  • COSO OA, CHIARIELLO M, YU JC et al: The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell (1995) 81:1137–1146.
  • MINDEN A, LIN A, CLARET FX, ABO A, KARIN M: Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell (1995) 81:1147–1157.
  • ZHANG S, HAN J, SELLS MA et al.: Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pakl. Biol. Chem. (1995) 270:23934–23936.
  • HILL CS, WYNNE J, TREISMAN R: The Rho family GTPases RhoA, Racl and CDC42Hs regulate transcriptional activation by SRF. Cell(i995) 81:1159-1170.
  • FANGER GR, JOHNSON NL, JOHNSON GL: MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. EMBO J. (1997) 16:4961–4972.
  • LIN A, MINDEN A, MARTINETTO H et al.: Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science (1995) 268:286–290.
  • SANCHEZ I, HUGHES RT, MAYER BJ et al: Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature (1994) 372:794–798.
  • DERIJARD B, RAINGEAUD J, BARRETT T et al.: Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science (1995) 267:682–685.
  • WOO CH, KIM JH: Rac GTPase activity isessential for lipopolysaccharide signaling to extracellular signal-regulated kinase and p38 MAP kinase activation in rat-2 fibroblasts. MM. Cells (2002) 13:470–475.
  • CLARKE N, ARENZANA N, HAI T, MINDEN A, PRYWES R: Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Ma Cell. Biol. (1998) 18:1065–1073.
  • MAZARS A, TOURNIGAND C, MOLLAT P et al.: Differential roles of JNK and Smad2 signaling pathways in the inhibition of c-Myc-induced cell death by Oncogene (2000) 19:1277–1287.
  • HOBERT ME, SANDS KA, MRSNY RJ, MADARA JL: Cdc42 and Racl regulate late events in Salmonella Ophimurium-induced interleukin-8 secretion from polarized epithelial cells. J. Biol. Chem. (2002) 277:51025–51032.
  • KHOSRAVI-FAR R, DER CJ: The Ras signal transduction pathway. Cancer Metastasis Rev (1994) 13:67–89.
  • SEABRA MC: Membrane association and targeting of prenylated Ras-like GTPases. Cell. Signal. (1998) 10:167–172.
  • ROWINSKY EK, WINDLE JJ, VON HOFF DD: Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. Clin. Oncol (1999) 17:3631–3652.
  • COHEN LH, PIETERMAN E, VAN LEEUWEN RE et al.: Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics. Biochem. Pharmacol (2000) 60:1061–1068.
  • WALTERS CE, PRYCE G, HANKEY DJ et al.: Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. Immunol (2002) 168:4087–4094.
  • GROUSE JR III, BYINGTON RP FURBERG CD: HMG-CoA reductase inhibitor therapy and stroke risk reduction: an analysis of clinical trials data. Atherosclerosis (1998) 138:11–24.
  • LAUFS U, LIAO JK: Targeting Rho in cardiovascular disease. Circ. Res. (2000) 87:526–528.
  • LAUFS U, KILTER H, KONKOL C, WASSMANN S, BOHM M, NICKENIG G: Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc. Res. (2002) 53:911–920.
  • LAUFS U: Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur. Chu. PharmacoL (2003) 58:719–731.
  • SAHAI E, ISHIZAKI T, NARUMIYA S, TREISMAN R: Transformation mediated by RhoA requires activity of ROCK kinases. Carr. Biol. (1999) 9:136–145.
  • HISAOKA T, YANO M, OHKUSA T et al.: Enhancement of Rho/Rho-kinase system in regulation of vascular smooth muscle contraction in tachycardia-induced heart failure. Cardiovasc. Res. (2001) 49:319–329.
  • ASHIDA N, ARAI H, YAMASAKI M, KITA T: Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis. J. Biol. Chem. (2001) 276:16555–16560.
  • KATAOKA C, EGASHIRA K, INOUE S et al.: Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension (2002) 39:245–250.
  • MORISHIGE K, SHIMOKAWA H, ETO Y, HOSHIJIMA M, KAIBUCHI K, TAKESHITA A: ha vivo gene transfer of dominant-negative rho-kinase induces regression of coronary arteriosclerosis in pigs. Ann. NY Acad. Sci. (2001) 947:407–411.
  • •This study first reports that targeting Rho family GTPase signalling could physiologically intervene with development of a human disease in the animal model of coronary arteriosclerosis.
  • SCHRAUFSTATTER IU, CHUNG J, BURGER M: IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am. j Physiol Lung Cell MoL Physiol (2001) 280:L1094–L1103.
  • POTHOULAKIS C: Effects of Clostridium diffiche toxins on epithelial cell barrier. Ann. NY Acad. Sci. (2000) 915:347–356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.