139
Views
17
CrossRef citations to date
0
Altmetric
Review

Receptor protein tyrosine phosphatase ζ as a therapeutic target for glioblastoma therapy

, , &
Pages 211-220 | Published online: 25 Feb 2005

Bibliography

  • BORING CC, SQUIRES TS, TONG T, MONTGOMERY S: Cancer statistics, 1994. CA Cancerj Clin. (1994) 44:7–26.
  • DAVIS FG, KUPELIAN V, FREELS S, MCCARTHY B, SURAWICZ T: Prevalence estimates for primary brain tumors in the United States by behavior and major histology groups. Neuro-oncol. (2001) 3:152–158.
  • POLLACK IF: Brain tumors in children. N Engl. J. Med. (1994) 331:1500–1507.
  • PACKER RJ, VEZINA G: Pediatric glial neoplasms including brain-stem gliomas. Semin. Oncol. (1994) 21:260–272.
  • KLEIHUES P, OHGAKI H: Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncol. (1999) 1:44–51.
  • •Introduction of primary versus secondary GBM classification.
  • KLEIHUES P, OHGAKI H: Phenotype versus genotype in the evolution of astrocytic brain tumors. Toxicol. Pathol. (2000) 28:164–170.
  • ROSSER T, PACKER RJ: Intracranial neoplasms in children with neurofibromatosis 1. J. Child Nemo]. (2002) 17:630-637; discussion 646–651.
  • SHEPHERD CW, GOMEZ MR, LIE JT, CROWS ON CS: Causes of death in patients with tuberous sclerosis. Mayo. Clin. Proc. (1991) 66:792–796.
  • MALKIN D, LI FP, STRONG LC et al.: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science (1990) 250:1233–1238.
  • LAWS ER, PARNEY IF, HUANG W et al: Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. Neurosurg. (2003) 99:467–473.
  • KRAMM CM, SENA-ESTEVES M, BARNETT FH et al.: Gene therapy for brain tumors. Thalia Pathol. (1995) 5:345–381.
  • SUGAWA N, UEDA S, NAKAGAWA Y et al: An antisense EGFR oligodeoxynucleotide enveloped in Lipofectin induces growth inhibition in human malignant gliomas M vitro. Neurooncol. (1998) 39:237–244.
  • BIGNER DD, BROWN MT, FRIEDMAN AH et al.: Iodine-131-labeled antitenascin monoclonal antibody 8106 treatment of patients with recurrent malignant gliomas: Phase I trial results. Clin. Oncol. (1998) 16:2202–2212.
  • CHANG SM, KUHN JG, IAN ROBINS H et al.: A study of a different dose-intense infusion schedule of phenylacetate in patients with recurrent primary brain tumors consortium report. Invest. New Drugs (2003) 21:429–433.
  • DEININGER MH, WEINSCHENK T, MORGALLA MH, MEYERMANN R, SCHLUESENER HJ: Release of regulators of angiogenesis following Hypocrellin-A and -B photodynamic therapy of human brain tumor cells. Biochem. Biophys. Res. Commun. (2002) 298:520–530.
  • BREM S, COTRAN R, FOLKMAN J: Tumor angiogenesis: a quantitative method for histologic grading. Natl. Cancer Inst. (1972) 48:347–356.
  • HADDAD SF, MOORE SA, SCHELPER RL, GOEKEN JA: Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures of glioblastoma multiforme. I Neuropathol. Exp. Neurol. (1992) 51:488–492.
  • LAMSZUS K, KUNKEL P, WESTPHAL M: Invasion as limitation to anti-angiogenic glioma therapy. Acta Neuman,: Suppl. (2003) 88:169–177.
  • •Review detailing anti-angiogenesis treatment options and limitations.
  • GIESE A, WESTPHAL M: Glioma invasion in the central nervous system. Neurosurgery(1996) 39:235–250.
  • BERENS ME, GIESE A: `...those left behind.' Biology and oncology of invasive glioma cells. Neoplasia (1999) 1:208–219.
  • •Provides a good overview of GBM cell migration.
  • MATSUKADO Y, MACCARTY CS, KERNOHAN JW: The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. Neurosurg. (1961) 18:636–644.
  • MARIANI L, BEAUDRY C, MCDONOUGH WS et al.: Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis.' Neurooncol (2001) 53:161–176.
  • MARIANI L, MCDONOUGH WS, HOELZINGER DB et al.: Identification and validation of P311 as a glioblastoma invasion gene using laser capture microdissection. Cancer Res. (2001) 61:4190–4196.
  • WATANABE K, TACHIBANA 0, SATA K et al.: Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol (1996) 6:217-223; discussion 23–24.
  • VON DEIMLING A, LOUIS DN, VON AMMON K et al: Association of epidermal growth factor receptor gene amplification with loss of chromosome 10 in human glioblastoma multiforme. Neurosurg. (1992) 77:295–301.
  • REIFENBERGER G, LIU L, ICHIMURA K, SCHMIDT EE, COLLINS VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. (1993) 53:2736–2739.
  • TOHMA Y, GRATAS C, BIERNAT W et al.: PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. Neuropathol Exp. Nemo]. (1998) 57:684–689.
  • YOON KS, LEE MC, KANG SS et al: p53 mutation and epidermal growth factor receptor overexpression in glioblastoma. J. Korean Med. Sci. (2001) 16:481–488.
  • ZAUBERMAN A, FLUSBERG D, HAUPT Y, BARAK Y, OREN M: A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. (1995) 23:2584–2592.
  • ULBRICHT U, BROCKMANN MA, AIGNER A et al.: Expression and function of the receptor protein tyrosine phosphatase zeta and its ligand pleiotrophin in human astrocytomas. Neuropathol Exp. Nemo]. (2003) 62:1265–1275.
  • KRUEGER NX, SAITO H: A human transmembrane protein-tyrosine-phosphatase, PTP is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc. Natl. Acad. Sci. USA (1992) 89:7417–7421.
  • LEVY JB, CANOLL PD, SILVENNOINEN 0 et al.: The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J. Biol. Chem. (1993) 268:10573–10581.
  • TONKS NK, CHARBONNEAU H, DILTZ CD, FISCHER EH, WALSH KA: Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry (Mosc) (1988) 27:8695–8701.
  • BIXBY JL: Receptor tyrosine phosphatases in axon growth and guidance. Neuroreport (2000) 11:R5–R10.
  • ANDERSEN JN, MORTENSEN OH, PETERS GH et al.: Structural and evolutionary relationships among protein tyrosine phosphatase domains. MM. Cell. Biol. (2001) 21:7117–7136.
  • HOOFT VAN HUIJSDUIJNEN R: Protein tyrosine phosphatases: counting the trees in the forest. Gene (1998) 225:1–8.
  • BARNEA G, SILVENNOINEN 0, SHAANAN B et al.: Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP 7 defines a new subfamily of receptor tyrosine phosphatases. MM. Cell. Biol. (1993) 13:1497–1506.
  • JOHNSON KG, VAN VACTOR D: Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev. (2003) 83:1–24.
  • •Details the different classes of RPTPs and their functional role in CNS development.
  • MAEDA N, HAMANAKA H, 00HIRA A, NODA M: Purification, characterization and developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4 proteoglycan/phosphacan. Neuroscience (1995) 67:23–35.
  • CANOLL PD, BARNEA G, LEVY JB et al.: The expression of a novel receptor-type tyrosine phosphatase suggests a role in morphogenesis and plasticity of the nervous system. Brain Res. Dev. Brain Res. (1993) 75:293–298.
  • MILEV P, FRIEDLANDER DR, SAKURAI T et al.: Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J. Cell Biol. (1994) 127:1703–1715.
  • MAEDA N, NODA M: Involvement of receptor-like protein tyrosine phosphatase /RPTPI3 and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. Cell Biol. (1998) 142:203–216.
  • CANOLL PD, PETANCESKA S, SCHLESSINGERJ, MUSACCHIO JM: Three forms of RPTP-I3 are differentially expressed during gliogenesis in the developing rat brain and during glial cell differentiation in culture. J. Neurrisci. Res. (1996) 44:199–215.
  • GARWOOD J, HECK N, REICHARDT F, FAISSNER A: Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-P, interacts with neuronal receptors and promotes neurite outgrowth. J. Biol. Chem. (2003) 278:24164–24173.
  • HARROCH S, PALMERI M, ROSENBLUTH J et al: No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase 3.MM. Cell. Biol. (2000) 20:7706–7715.
  • HARROCH S, FURTADO GC, BRUECK W et al: A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions. Nat. Genet. (2002) 32:411–414.
  • LI J, TULLAI JW, YU WH, SALTON SR: Regulated expression during development and following sciatic nerve injury of mRNAs encoding the receptor tyrosine phosphatase HPTK/RPTPI3.Brain Res. MM. Brain Res. (1998) 60:77–88.
  • MAUREL P, RAUCH U, FLAD M, MARGOLIS RK, MARGOLIS RU: Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc. Natl. Acad. Sci. USA (1994) 91:2512–2516.
  • MILEV P, CHIBA A, HARING M et al.: High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-I3 with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J. Biol. Chem. (1998) 273:6998–7005.
  • ADAMSKY K, SCHILLING J, GARWOOD J, FAISSNER A, PELES E: Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase 13 (RPTPB) to tenascin C. Oncogene (2001) 20:609–618.
  • GRUMET M, MILEV P, SAKURAI T et al.: Interactions with tenascin and differential effects on cell adhesion of neurocan and phosphacan, two major chondroitin sulfate proteoglycans of nervous tissue. J. Biol. Chem. (1994) 269:12142–12146.
  • MILEV P, MONNERIE H, POPP S, MARGOLIS RK, MARGOLIS RU: The core protein of the chondroitin sulfate proteoglycan phosphacan is a high-affinity ligand of fibroblast growth factor-2 and potentiates its mitogenic activity. J. Biol. Chem. (1998) 273:21439–21442.
  • PELES E, NATIV M, CAMPBELL PL et al.: The carbonic anhydrase domain of receptor tyrosine phosphatase 13 is a functional ligand for the axonal cell recognition molecule contactin. Cell (1995) 82:251–260.
  • MENG K, RODRIGUEZ-PENA A, DIMITROV T et al.: Pleiotrophin signals increased tyrosine phosphorylation of 13 B-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase K. Proc. Nati Acad. Sci. USA (2000) 97:2603–2608.
  • •Establishes a mechanism of action for Ptn signalling via RPTK
  • KAWACHI H, FUJIKAWA A, MAEDA N, NODA M: Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase /13 by the yeast substrate-trapping system. Proc. Nati Acad. Sci. USA (2001) 98:6593–6598.
  • KAWACHI H, TAMURA H, WATAKABE I et al.: Protein tyrosine phosphatase zeta/RPTPB interacts with PSD-95/SAP90 family. Brant Res. Mol. Brant Res. (1999) 72:47–54.
  • RATCLIFFE CF, QU Y, MCCORMICK KA et al.: A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase B. Nat. Neurosci (2000) 3:437–444.
  • BILWES AM, DEN HERTOG J, HUNTER T, NOEL JP: Structural basis for inhibition of receptor protein-tyrosine phosphatase-a by dimerization. Nature (1996) 382:555–559.
  • MILNER PG, LI YS, HOFFMAN RM et al.: A novel 17 kD heparin-binding growth factor (HBGF-8) in bovine uterus: purification and N-terminal amino acid sequence. Biochem. Biophys. Res. Commun. (1989) 165:1096–1103.
  • RAUVALA H: An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J. (1989) 8:2933–2941.
  • DEUEL TF, ZHANG N, YEH HJ, SILOS-SANTIAGO I, WANG ZY: Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch. Biochem. Biophys. (2002) 397:162–171.
  • •Provides a good overview of the different functions of Ptn.
  • SILOS-SANTIAGO I, YEH HJ, GURRIERI MA et al.: Localization of pleiotrophin and its mRNA in subpopulations of neurons and their corresponding axonal tracts suggests important roles in neural-glial interactions during development and in maturity. Neurobiol. (1996) 31:283–296.
  • CHAUHAN AK, LI YS, DEUEL TF: Pleiotrophin transforms NIH 3T3 cells and induces tumors in nude mice. Proc. Nati Acad. Sci. USA (1993) 90:679–682.
  • WELLSTEIN A, FANG WJ, KHATRI A et al.: A heparin-binding growth factor secreted from breast cancer cells homologous to a developmentally regulated cytokine. Biol. Chem. (1992) 267:2582–2587.
  • KURTZ A, SCHULTE AM, WELLSTEIN A: Pleiotrophin and midkine in normal development and tumor biology. Crit. Rev Oncog. (1995) 6:151–177.
  • FANG W, HARTMANN N, CHOW DT, RIEGEL AT, WELLSTEIN A: Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J. Biol. Chem. (1992) 267:25889–25897.
  • YEH HJ, HE YY, XU J, HSU CY, DEUEL TF: Upregulation of pleiotrophin gene expression in developing microvasculature, macrophages, and astrocytes after acute ischemic brain injury. Neurosci. (1998) 18:3699–3707.
  • MULLER S, KUNKEL P, LAMSZUS K et al.: A role for receptor tyrosine phosphatase in glioma cell migration. Oncogene (2003) 22:6661–6668.
  • SCHMIDT NO, WESTPHAL M, HAGEL C et al.: Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer (1999) 84:10–18.
  • BURGER PC, DUBOIS PJ, SCHOLD SC Jr et al.: Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. Neurosurg. (1983) 58:159–169.
  • EARNEST FT, KELLY PJ, SCHEITHAUER BW et al.: Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology (1988) 166:823–327.
  • WESTPHAL M, BLACK P: Perspectives of cellular and molecularneurosurgery. J. Neurooncol. (in press).
  • WESTPHAL M, HILT DC, BORTEY E et al.: A Phase III trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol. (2003) 5:79–88.
  • WESTPHAL M, LAMSZUS K, HILT D: Intracavitary chemotherapy for glioblastoma: present status and future directions. Acta Neurochic Suppl. (2003) 88:61–67.
  • MERLO A, MUELLER-BRAND J, MAECKE HR: Comparing monoclonal antibodies and small peptidic hormones for local targeting of malignant gliomas. Acta Neurochir. Suppl. (2003) 88:83–91.
  • •A good review article detailing the current use of mAbs in the treatment of GBMs.
  • GOETZ C, RACHINGER W, POEPPERL G et al.: Intralesional radioimmunotherapy in the treatment of malignant glioma: clinical and experimental findings. Acta Neurochic Suppl. (2003) 88:69–75.
  • WUST P, HILDEBRANDT B, SREENIVASA G et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. (2002) 3:487–497.
  • LIBERMANN TA, NUSBAUM HR, RAZON N et al.: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature (1985) 313:144–147.
  • MISHIMA K, JOHNS TG, LUWOR RB et al.: Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res. (2001) 61:5349–5354.
  • KURPAD SN, ZHAO XG, WIKSTRAND CJ et al: Tumor antigens in astrocytic gliomas. Cita (1995) 15:244–256.
  • LORIMER IA, KEPPLER-HAFKEMEYER A, BEERS RA et al.: Recombinant immunotwdns specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc. Nati Acad. Sci. USA (1996) 93:14815–14820.
  • SAMPSON JH, CROTTY LE, LEE S et al.: Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc. Nati Acad. Sci. USA (2000) 97:7503–7508.
  • BROWN MT, COLEMAN RE, FRIEDMAN AH et al.: Intrathecal 131I-labeled antitenascin monoclonal antibody 8106 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: Phase I trial results. Clin. Cancer Res. (1996) 2:963–972.
  • ZALUTSKY MR, ARCHER GE, GARG PK, BATRA SK, BIGNER DD: Chimeric anti-tenascin antibody 8106: increased tumor localization compared with its murine parent. Nucl. Med. Biol. (1996) 23:449–458.
  • ZALUTSKY MR, ZHAO XG, ALSTON KL, BIGNER D: High-level production of a-particle-emitting (211)At and preparation of (211)At-labeled antibodies for clinical use. Nucl. Med. (2001) 42:1508–1515.
  • MERLO A, JERMANN E, HAUSMANN 0 et al.: Biodistribution of 111In-labelled SCN-bz-DTPA-BC-2 MAb following loco-regional injection into glioblastomas. hat. Cancer (1997) 71:810–816.
  • RIVA P, ARISTA A, FRANCESCHI G et al.: Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 1311: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res. (1995) 55 (23 Suppl.):5952–5956.
  • LEE Y, BULLARD DE, HUMPHREY PA et al.: Treatment of intracranial human glioma xenografts with 131I-labeled anti-tenascin monoclonal antibody 8106.Cancer Res. (1988) 48:2904–2910.
  • LEE YS, BULLARD DE, ZALUTSKY MRet al.: Therapeutic efficacy of antiglioma mesenchymal extracellular matrix 131I-radiolabeled murine monoclonal antibody in a human glioma xenograft model. Cancer Res. (1988) 48:559–566.
  • ZALUTSKY MR, MOSELEY RP, BENJAMIN JC et al: Monoclonal antibody and F(ab')2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res. (1990) 50:4105–4110.
  • COKGOR I, AKABANI G, KUAN CT et al.: Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 8106 treatment of patients with newly diagnosed malignant gliomas. Clin. Dina (2000) 18:3862–3872.
  • REARDON DA, AKABANI G, COLEMAN RE et al.: Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 8106 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. Clin. Oncol. (2002) 20:1389–1397.
  • VAIDYANATHAN G, AFFLECK D, ZALUTSKY MR: Monoclonal antibody F(ab')2 fragment labeled with N-succinimidyl 2,4-dimethoxy-3-halobenzoates: in vivo comparison of iodinated and astatinated fragments. Nucl. Med. Biol. (1994) 21:105–110.
  • STEWART LA: Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet (2002) 359:1011–1018.
  • RICH JN, REARDON DA, PEERY T et al.: Phase II trial of gefitinib in recurrent glioblastoma. Clin. Dina (2004) 22:133–142.
  • HUANG S, HOUGHTON PJ: Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Carr: Opin. Investig. Drugs (2002) 3:295–304.
  • KUNKEL P, ULBRICHT U, BOHLEN P et al.: Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2.Cancer Res. (2001) 61:6624–6628.
  • MENDEL DB, SCHRECK RE, WEST DC et al.: The angiogenesis inhibitor 5U5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin. Cancer Res. (2000) 6:4848–4858.
  • MENDEL DB, LAIRD AD, SMOLICH BD et al.: Development of 5U5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des. (2000) 15:29–41.
  • VOORHEES PM, DEES EC, O'NEIL B, ORLOWSKI RZ: The proteasome as a target for cancer therapy. Clin. Cancer Res. (2003) 9:6316–6325.
  • LING YH, LIEBES L, JIANG JD et al.: Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin. Cancer Res. (2003) 9:1145–1154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.