93
Views
48
CrossRef citations to date
0
Altmetric
Review

The plastid-derived organelle ofprotozoan human parasites asa target of established and emerging drugs

&
Pages 23-44 | Published online: 22 Apr 2005

Bibliography

  • WORLD HEALTH ORGANISATION: Communicable diseases 2002: global defense against the infectious disease threat. Kindhauser M (Ed.) World Health Organisation, Geneva, (2003):231(XX).
  • CAMPBELL P, BUTLER D: Malaria. Nature (2004) 430:923ff.
  • LEVINE ND: The protozoan phylum Apicomplexa. (Ed.) CRC Press, Boca Raton (1988).
  • MAITLAND K, BEJON P, NEWTON CR: Malaria. Curr. Opin. Infect. Dis. (2003) 16:389–395.
  • •Short introduction to malaria.
  • RIDLEY RG: Medical need, scientific opportunity and the drive for antimalarial drugs. Nature (2002) 415:686–693.
  • WHITE NJ: Antimalarial drug resistance. J. Clin. Invest. (2004) 113:1084–1092.
  • •Gives a good overview of the problem of drug resistance.
  • WINSTANLEY P, WARD S, SNOW R, BRECKENRIDGE A: Therapy of falciparum malaria in sub-saharan Africa: from molecule to policy. Clin. Microbial Rev. (2004) 17:612–637.
  • WIESNER J, ORTMANN R, JOMAA H, SCHLITZER M: New antimalarial drugs. Angew. Chem. Int. Ed. Engl. (2003) 42:5274–5293.
  • •Comprehensive overview of established and new compounds targeting diverse pathways in the malarial parasite, not only the apicoplast.
  • MONTOYA JG, LIESENFELD O: Toxoplasmosis. Lancet (2004) 363:1965–1976.
  • •Provides a timely introduction to the disease.
  • TENTER AM, HECKEROTH AR, WEISS LM: Toxoplasma gandli: from animals to humans. Int. Parasitol (2000) 30:1217–1258.
  • TORREY EF, YOLKEN RH: Toxoplasma gandli and schizophrenia. Emerg. Infect. Dis. (2003) 9:1375–1380.
  • HIJJAWI NS, MELONI BP, NG'ANZO M et al.: Complete development of Cryptosporidium parvum in host cell-free culture. Int. Parasitol (2004) 34:769–777.
  • MEAD JR: Cryptosporidiosis and the challenges of chemotherapy. Drug Resist. Update (2002) 5:47–57.
  • ABRAHAMSEN MS, TEMPLETON TJ, ENOMOTO S et al.: Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science (2004) 304:441–445.
  • •Provides unequivocal evidence that this apicomplexan parasite does not contain an apicoplast and also lays the foundation for future drug targets.
  • ZHU G, MARCHEWKA MJ, KEITHLY JS: Cryptosporidium parvum appears to lack a plastid genome. Microbiology (2000) 146:315–321.
  • LEANDER BS, KEELING PJ: Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from hsp90 and actin phylogenies. Phycol (2004) 40:341–350.
  • FAST NM, KISSINGER JC, ROOS DS, KEELING PJ: Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. (2001) 18:418–426.
  • TEMPLETON TJ, IYER LM, ANANTHARAMAN V et al: Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Res. (2004) 14:1686–1695.
  • CHEN XM, KEITHLY JS, PAYA CV, LARUSSO NF: Cryptosporidiosis. N Engl. J. Med. (2002) 346:1723–1731.
  • SHIELDS JM, OLSON BH: Cyclaspora cayetanensis: a review of an emerging parasitic coccidian. Int. J. Parasitol (2003) 33:371–391.
  • WILSON RJ: Progress with parasite plastids. MoL Biol. (2002) 319:257–274.
  • FOTH BJ, MCFADDEN GI: The apicoplast: a plastid in Plasmodium fakiparum and other Apicomplexan parasites. Int. Rev Cytal (2003) 224:57–110.
  • ••This review, together with [21],gives a comprehensive and insightful overview of our current knowledge of the biology of the apicoplast.
  • RALPH SA, VAN DOOREN GG, WALLER RF et al.: Metabolic maps and functions of the Plasmodium fakiparum apicoplast. Nat. Rev Microbial (2004) 2:203–216.
  • ••An oustanding compilation of the presumed metabolic pathways operating in the apicoplast, based on bioinformatic predictions and biochemical evidence.
  • FUNES S, REYES-PRIETO A, PEREZ-MARTINEZ X, GONZALEZ-HALPHEN D: On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect. (2004) 6:305–311.
  • GARDNER MJ, WILLIAMSON DH, WILSON RJ: A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mal Biochem. Parasital. (1991) 44:115–123.
  • GARDNER MJ, HALL N, FUNG E et al: Genome sequence of the human malaria parasite Plasmodium fakiparum. Nature (2002) 419:498–511.
  • ••A landmark paper that has already provided the basis for the discovery of a number of potential drug targets.
  • FOTH BJ, RALPH SA, TONKIN CJ et al: Dissecting apicoplast targeting in the malaria parasite Plasmodium fakiparum. Science (2003) 299:705–708.
  • ZUEGGE J, RALPH S, SCHMUKER M, MCFADDEN GI, SCHNEIDER G: Deciphering apicoplast targeting signals - feature extraction from nuclear-encoded precursors of Plasmodium fakiparum apicoplast proteins. Gene (2001) 280:19–26.
  • RALPH SA, D'OMBRAIN MC, MCFADDEN GI: The apicoplast as an antimalarial drug target. Drug Resist. Update (2001) 4:145–151.
  • SEEBER F: Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr. Drug Targets Immune Endocr. Metabol Disord. (2003) 3:99–109.
  • VAIDYA AB: Mitochondrial and plastid functions as antimalarial drug targets. Curr. Drug Targets Infect. Disord. (2004) 4:11–23.
  • FICHERA ME, ROOS DS: A plastid organelle as a drug target in apicomplexan parasites. Nature (1997) 390:407–409.
  • •The first description that the apicoplast is an essential component in Apicomplexa.
  • WEISSIG V, VETRO-WIDENHOUSE TS, ROWE TC: Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium fakiparum. DNA Cell Biol. (1997) 16:1483–1492.
  • •Provides direct evidence for the mechanism of action of gyrase inhibitors in 1? falciparum.
  • WILLIAMSON DH, PREISER PR, MOORE PW et al: The plastid DNA of the malaria parasite Plasmodium fakiparum is replicated by two mechanisms. Mol Microbial. (2002) 45:533–542.
  • WILSON RJ, DENNY PW, PREISER PR et al: Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium fakiparum. Mol Biol. (1996) 261:155–172.
  • MCCONKEY GA, ROGERS MJ, MCCUTCHAN TF: Inhibition of Plasmodium fakiparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J. Biol. Chem. (1997) 272:2046–2049.
  • STRATH M, SCOTT-FINNIGAN T, GARDNER M, WILLIAMSON D, WILSON I: Antimalarial activity of rifampicin in vitro and in rodent models. Trans. R. Soc. Trop. Med. Hyg. (1993) 87:211–216.
  • PUKRITTAYAKAMEE S, VIRAVAN C, CHAROENLARP P et al: Antimalarial effects of rifampin in Plasmodium vivax malaria. Antimicrob. Agents Chemother. (1994) 38:511–514.
  • FREERKSEN E, KANTHUNKUMVA EW, KHOLOWA AR: Cotrifazid - an agent against malaria. Chemotherapy (1996) 42:391–401.
  • GOERG H, OCHOLA SA, GOERG R: Treatment of malaria tropica with a fixed combination of rifampicin, co-trimoxazole and isoniazid: a clinical study. Chemotherapy (1999) 45:68–76.
  • •Shows the antimalarial efficacy of a rifampicin-containing drug combination.
  • ARAUJO FG, KHAN AA, REMINGTON JS: Rifapentine is active in vitro and in vivo against Toxoplasma Antimicrob. Agents Chemother. (1996) 40:1335–1337.
  • CAI X, FULLER AL, MCDOUGALD LR,ZHU G: Apicoplast genome of the coccidian Eimeria tenella. Gene (2003) 321:39–46.
  • SPAHN CM, PRESCOTT CD: Throwing a spanner in the works: antibiotics and the translation apparatus. ./. Mol Med. (1996) 74:423–439.
  • BECKERS CJ, ROOS DS, DONALD RG et al.: Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii: implications for the target of macrolide antibiotics. Clin. Invest. (1995) 95:367–376.
  • KIATFUENGFOO R, SUTHIPHONGCHAI T, PRAPUNWATTANA P, YUTHAVONG Y: Mitochondria as the site of action of tetracycline on Plasmodium falciparum. Mol Biochem. Parasitol (1989) 34:109–115.
  • CAMPS M, ARRIZABALAGA G, BOOTHROYD J: An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii Mol. Microbial. (2002) 43:1309–1318.
  • •A nice example that shows how molecular methods can be used to identify the molecular target of an already used drug.
  • ROGERS MJ, CUNDLIFFE E, MCCUTCHAN TF: The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob. Agents Chemother. (1998) 42:715–716.
  • CLOUGH B, STRATH M, PREISER P, DENNY P, WILSON IR: Thiostrepton binds to malarial plastid rRNA. FEBS Lett. (1997) 406:123–125.
  • SULLIVAN M, LI J, KUMAR S, ROGERS MJ, MCCUTCHAN TF: Effects of interruption of apicoplast function on malaria infection, development, and transmission. Mol Biochem. Parasitol (2000) 109:17–23.
  • CARTER R: Spatial simulation of malariatransmission and its control by malaria transmission blocking vaccination. Int. J. Parasitol (2002) 32:1617–1624.
  • HISAEDA H, YASUTOMO K: Development of malaria vaccines that block transmission of parasites by mosquito vectors. .1 Med. Invest. (2002) 49:118–123.
  • CLOUGH B, RANGACHARI K, STRATH M, PREISER PR, WILSON RJ: Antibiotic inhibitors of organellar protein synthesis in Plasmodium fakiparum. Protist (1999) 150:189–195.
  • FICHERA ME, BHOPALE MK, ROOS DS: In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii Antimicrob. Agents Chemother. (1995) 39:1530–1537.
  • ••Gives the most comprehensive insightInto the phenomenon of the delayed death phenotype to date.
  • GEARY TG, JENSEN JB: Effects of antibiotics on Plasmodium fakiparum in vitro. Am. J. Trop. Med. Hyg. (1983) 32:221–225.
  • YEO AE, EDSTEIN MD, SHANKS GD, RIECKMANN KH: Potentiation of the antimalarial activity of atovaquone by doxycycline against Plasmodium falciparum in vitro. Parasitol Res. (1997) 83:489–491.
  • YEO AE, RIECKMANN KH: Prolonged exposure of Plasmodium falciparum to ciprofloxacin increases anti-malarial activity. .1 Parasitol (1994) 80:158–160.
  • YEO AE, RIECKMANN KH: Increased antimalarial activity of azithromycin during prolonged exposure of Plasmodium falciparum in vitro. Int. J. Parasitol (1995) 25:531–532.
  • PRADINES B, SPIEGEL A, ROGIER C et al: Antibiotics for prophylaxis of Plasmodium fakiparum infections: in vitro activity of doxycycline against Senegalese isolates. Am. J. Trop. Med. Hyg. (2000) 62:82–85.
  • YEO AE, RIECKMANN KH: The in vitro antimalarial activity of chloramphenicol against Plasmodium falciparum. Acta Trop. (1994) 56:51–54.
  • HE CY, SHAW MK, PLETCHER CH et al: A plastid segregation defect in the protozoan parasite Toxoplasma gondii EMBO J. (2001) 20:330–339.
  • •Illustrates nicely the impressive consequences of the loss of the apicoplast on a cellular level.
  • DIVO AA, GEARY TG, JENSEN JB: Oxygen- and time-dependent effects of antibiotics and selected mitochondrial inhibitors on Plasmodium falciparum in culture. Antimicrob. Agents Chemother. (1985) 27:21–27.
  • WIESNER J, BORRMANN S, JOMAA H: Fosmidomycin for the treatment of malaria. Parasitol Res. (2003) 90(Suppl 2):571–576.
  • •Comprehensive review on isoprenoid synthesis in 1? falciparum.
  • KOLLAS AK, DUIN EC, EBERL M etal.: Functional characterization of GcpE, an essential enzyme of the non-mevalonate pathway of isoprenoid biosynthesis. FEBS Lett. (2002) 532:432–436.
  • SEEMANN M, BUT BT, WOLFF M etal.: Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angew. Chem. Int. Ed.Engl. (2002) 41:4337–4339.
  • ALTINCICEK B, DUIN EC, REICHENBERG A etal.: LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythrito1-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett. (2002) 532:437–440.
  • WIESNER J, HINTZ M, ALTINCICEK B etal.: Plasmodium fakiparum: detection of the deoxyxylulose 5-phosphate reductoisomerase activity. Exp. Parasitol. (2000) 96:182–186.
  • JOMAA H, WIESNER J, SANDERBRAND S et al.: Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science (1999) 285:1573–1576.
  • ••Describes the initial identification of isoprenoid synthesis in P faldparum and its inhibition by Fosmidomycin.
  • KUZUYAMA T, SHIMIZU T, TAKAHASHI S, SETO H: Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett. (1998) 39:7913–7916.
  • ZEIDLER J, SCHWENDER J, MULLER C et al.: Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch. C(1998) 53:980–986.
  • KUEMMERLE HP, MURAKAWA T, SAKAMOTO H et al.: Fosmidomycin, a new phosphonic acid antibiotic. Part II: 1. Human pharmacokinetics. 2. Preliminary early phase Ha clinical studies. Int. J. Clin. Pharmacol. Ther. Toxicol. (1985) 23:521–528.
  • SHIGI Y: Inhibition of bacterial isoprenoidsynthesis by fosmidomycin, a phosphonic acid-containing antibiotic. .1 Antimicrob. Chemother. (1989) 24:131–145.
  • STEINBACHER S, KAISER J, EISENREICH W et al.: Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-D-erythritol 4-phosphate synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development. ./. Biol. Chem. (2003) 278:18401–18407.
  • WIESNER J, HENS CHKER D, HUTCHINSON DB, BECK E, JOMAA H: In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob. Agents Chemother. (2002) 46:2889–2894.
  • TSUCHIYA T, ISHIBASHI K, TERAKAWA M et al.: Pharmacokinetics and metabolism of fosmidomycin, a new phosphonic acid, in rats and dogs. Eur. J. Drug Metab. Pharmacokinet. (1982) 7:59–64.
  • MURAKAWA T, SAKAMOTO H, FUKADA S, KONISHI T, NISHIDA M: Pharmacokinetics of fosmidomycin, a new phosphonic acid antibiotic. Antimicrob. Agents Chemother. (1982) 21:224–230.
  • KUEMMERLE HP, MURAKAWA T, SONEOKA K, KONISHI T: Fosmidomycin: a new phosphonic acid antibiotic. Part I: Phase I tolerance studies. Int. J. Clin. Pharmacol. Ther. Toxicol. (1985) 23:515–520.
  • REICHENBERG A, WIESNER J, WEIDEMEYER C et al.: Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Bioorg. Med. Chem. Lett. (2001) 11:833–835.
  • ORTMANN R, WIESNER J, REICHENBERG A et al.: Acyloxyalkyl ester prodrugs of FR900098 with improved in vivo anti-malarial activity. Bioorg. Med. Chem. Lett. (2003) 13:2163–2166.
  • GOTTLIN EB, BENSON RE, CONARY S et al.: High-throughput screen for inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase by surrogate ligand competition. ./. Biomol. Screen. (2003) 8:332–339.
  • REUTER K, SANDERBRAND S, JOMAA H et al.: Crystal structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. .1 Biol. Chem. (2002) 277:5378–5384.
  • YAJIMA S, NONAKA T, KUZUYAMA T, SETO H, OHSAWA K: Crystal structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase complexed with cofactors: implications of a flexible loop movement upon substrate binding. Biochem. (2002) 131:313–317.
  • RICAGNO S, GROLLE S, BRINGER-MEYER S et al.: Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Zymomonas mobilis at 1.9-A resolution. Biochim. Biophys. Acta (2004) 1698:37–44.
  • RICHARD SB, BOWMAN ME, KWIATKOWSKI W et al.: Structure of 4-diphosphocytidy1-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis. Nat. Struct. Biol. (2001) 8:641–648.
  • WADA T, KUZUYAMA T, SATOH S et al.: Crystal structure of 4-(cytidine 5'-diphospho) 2 C methyl-D-erythritol kinase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis. ./. Biol. Chem. (2003) 278:30022–30027.
  • MIALLAU L, ALPHEY MS, KEMP LE et al.: Biosynthesis of isoprenoids: crystal structure of 4-diphosphocytidy1-2C-methyl-D-erythritol kinase. Proc. Nati Acad. Sri. USA (2003) 100:9173–9178.
  • KISHIDA H, WADA T, UNZAI S et al.:Structure and catalytic mechanism of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) synthase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis. Acta Crystallogr. D. Biol. Crystallogr. (2003) 59:23–31.
  • ALTINCICEK B, HINTZ M, SANDERBRAND S et al.: Tools for discovery of inhibitors of the 1-deoxy-D-xylulose 5-phosphate (DXP) synthase and DXP reductoisomerase: an approach with enzymes from the pathogenic bacterium Pseudomonas aeruginosa. FEMS Microbiol. Lett. (2000) 190:329–333.
  • ROHDICH F, WUNGSINTAWEEKUL J, FELLERMEIER M et al.: Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coil catalyzes the formation of 4-diphosphocytidy1-2-C-methylerythritol. Proc. Natl. Acad. Sci. USA (1999) 96:11758–11763.
  • BRANDT W, DESSOY MA, FULHORST M et al.: A proposed mechanism for the reductive ring opening of the cyclodiphosphate MEcPP, a crucial transformation in the new DXP/MEP pathway to isoprenoids based on modeling studies and feeding experiments. Chembiochem. (2004) 5:311–323.
  • EBERL M, HINTZ M, REICHENBERG A et al: Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. (2003) 544:4–10.
  • GORNICKI P: Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. Int. J. Parasitol (2003) 33:885–896.
  • •Gives a good overview on FAS in Apicomplexa.
  • RANGAN VS, SMITH S: Fatty acid synthesis in eukaryotes. In: Biochemistry of lipids, lipoproteins and mebranes. Vance DE et al. (Eds) Elsevier Science, Amsterdam (2002):151–179.
  • HEATH RJ, WHITE SW, ROCK CO: Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appi Microbiol Biotechnol (2002) 58:695–703.
  • CAMPBELL JW, CRONAN JE: Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. AMU. Rev Microbiol (2001) 55:305–332.
  • HEATH RJ, ROCK CO: Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs (2004) 5:146–153.
  • WALLER RE KEELING PJ, DONALD RG et al: Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium fakiparum. Proc. Natl. Acad. Sci. USA (1998) 95:12352–12357.
  • ••This report provided the first evidence offatty acid biosynthesis in the apicoplast by nuclear-encoded proteins and paved the way for a number of inhibitor studies.
  • MCFADDEN GI, ROOS DS: Apicomplexan plastids as drug targets. Trends Microbiol (1999) 7:328–333.
  • ROCK CO, JACKOWSKI S: Forty years of bacterial fatty acid synthesis. Biochem. Biophys. Res. Commun. (2002) 292:1155–1166.
  • PRIGGE ST, HEX, GERENA L, WATERS NC, REYNOLDS KA: The initiating steps of a type II fatty acid synthase in Plasmodium fakiparum are catalyzed by pfacp, pfmcat, and piKASIII. Biochemistry (2003) 42:1160–1169.
  • WALLER RE RALPH SA, REED MB et al: A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium fakiparum. Antimicrob. Agents Chemother. (2003) 47:297–301.
  • JONES SM, URCH JE, BRUN R et al: Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. Bioorg. Med. Chem. (2004) 12:683–692.
  • JACKOWSKI S, ZHANG YM, PRICE AC, WHITE SW, ROCK CO: A missense mutation in the fabB (beta-ketoacyl-acyl carrier protein synthase I) gene confers tiolactomycin resistance to Escherichia coll. Antimicrob. Agents Chemother. (2002) 46:1246–1252.
  • KUHAJDA FP, PIZER ES, LI JN et al.: Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Nati Acad. ScL USA (2000) 97:3450–3454.
  • SUROLIA N, SUROLIA A: Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium fakiparum. Nat. Med. (2001) 7:167–173.
  • ••Together with [114] establishes in vivoantimalarial efficacy of an inhibitor of fatty acid synthesis and thus defines a promising drug candidate.
  • INCLEDON BJ, HALL JC: Acetyl-coenzyme A carboxylase: quaterny structure and inhibition by graminicidal herbicides. Pestle. Biochem. Physiol. (1997) 57:255–271.
  • JELENSKA J, CRAWFORD MJ, HARB OS et al.: Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proc. Nati Acad. ScL USA (2001) 98:2723–2728.
  • ZUTHER E, JOHNSON JJ, HASELKORN R, MCLEOD R, GORNICKI P: Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc. Nati Acad. Sci. USA (1999) 96:13387–13392.
  • JELENSKA J, SIRIKHACHORNKIT A, HASELKORN R, GORNICKI P: The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. Biol. Chem. (2002) 277:23208–23215.
  • BORK S, YOKOYAMA N, MATSUO T et al.: Clotrimazole, ketoconazole, and clodinafop-propargyl as potent growth inhibitors of equine Babesia parasites during in vitro culture. Parasitoi (2003) 89:604–606.
  • SHANER DL: Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. (2004) 60:17–24.
  • ZAGNITKO O, JELENSKA J, TEVZADZE G, HASELKORN R, GORNICKI P: An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Nati Acad. ScL USA (2001) 98:6617–6622.
  • LEVY CW, ROUJEINIKOVA A, SEDELNIKOVA S et al: Molecular basis of triclosan activity. Nature (1999) 398:383–384.
  • HEATH RJ, RUBIN JR, HOLLAND DR et al.: Mechanism of triclosan inhibition of bacterial fatty acid synthesis. .1 Biol. Chem. (1999) 274:11110–11114.
  • MCLEOD R, MUENCH SP, RAFFERTY JB et al: Triclosan inhibits the growth of Plasmodium fakiparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int. .1. Parasitoi (2001) 31:109–113.
  • PEROZZO R, KUO M, SIDHU AS et al: Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. ./. Biol. Chem. (2002) 277:13106–13114.
  • SAMUEL BU, HEARN B, MACK D et al.: Delivery of antimicrobials into parasites. Proc. Nati Acad. ScL USA (2003) 100:14281–14286.
  • •Shows a very interesting approach to improve the bioavailability of triclosan for in vivo use.
  • KAPOOR M, GOPALAKRISHNAPAI J, SUROLIA N, SUROLIA A: Mutational analysis of the triclosan-binding region of enoyl-ACP (acyl-carrier protein) reductase from Plasmodium fakiparum. Biochem. (2004) 381:735–741.
  • KUO MR, MORBIDONI HR, ALLAND D et al.: Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data. J. Biol. Chem. (2003) 278:20851–20859.
  • WENDER PA, MITCHELL DJ, PATTABIRAMAN K et al.: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Nati Acad. Sci. USA (2000) 97:13003–13008.
  • SHARMA S, RAMYA TN, SUROLIA A, SUROLIA N: Triclosan as a systemic antibacterial agent in a mouse model of acute bacterial challenge. Antimicrob. Agents Chemother. (2003) 47:3859–3866.
  • CHARRON AJ, SIBLEY LD: Host cells mobilizable lipid resources for the intracellular parasite Toxoplasma gondii Cell Sci. (2002) 115:3049–3059.
  • RAO SP, SUROLIA A, SUROLIA N: Triclosan: a shot in the arm for antimalarial chemotherapy. Mol. Cell. Biochem. (2003) 253:55–63.
  • VILLALAIN J, MATEO CR, ARANDA FJ, SHAPIRO S, MICOL V: Membranotropic effects of the antibacterial agent Triclosan. Arch. Biochem. Biophys. (2001) 390:128–136.
  • LYGRE H, MOE G, SKALEVIK R, HOLMSEN H: Interaction of triclosan with eukaryotic membrane lipids. Eur.1. Oral Sci. (2003) 111:216–222.
  • WANG LQ, FALANY CN, JAMES MO: Triclosan as a substrate and inhibitor of PAPS-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. (2004) 32:1162–1169.
  • PAUL KS, BACCHI CJ, ENGLUND PT: Multiple triclosan targets in Trypanosoma brucei. Eukaryot. Cell (2004) 3:855–861.
  • LIU B, WANG Y, FILLGROVE KL, ANDERSON VE: Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol. (2002) 49:187–193.
  • ARAI M, ALAVI YI, MENDOZA J, BILLKER O, SINDEN RE: Isonicotinic acid hydrazide: an anti-tuberculosis drug inhibits malarial transmission in the mosquito gut. Exp. Parasitol. (2004) 106:30–36.
  • ZHU G: Current progress in the fatty acid metabolism in Cryptosporidium parvum.1. Euk. Microbial. (2004) 51:381–388.
  • GIGLIONE C, BOULAROT A, MEINNEL T: Protein N-terminal methionine excision. Cell. Mol. Life Sci. (2004) 61:1455–1474.
  • GIGLIONE C, SERERO A, PIERRE M, BOISSON B, MEINNEL T: Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO (2000) 19:5916–5929.
  • MEINNEL T: Peptide deformylase of eukaryotic protists: a target for new antiparasitic agents? Parasitol. Today (2000) 16:165–168.
  • CHEN DZ, PATEL DV, HACKBARTH CJ et al.: Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry (2000) 39:1256–1262.
  • WIESNER J, SANDERBRAND S, ALTINCICEK B, BECK E, JOMAA H: Seeking new targets for antiparasitic agents. Trends Parasitol. (2001) 17:7–8.
  • BOULAROT A, GIGLIONE C, ARTAUD I, MEINNEL T: Structure-activity relationship analysis and therapeutic potential of peptide deformylase inhibitors. Curr. Opin. Invest. Drugs (2004) 5:809–822.
  • ROBIEN MA, NGUYEN KT, KUMAR A et al.: An improved crystal form of Plasmodium fakiparum peptide deformylase. Protein Sci. (2004) 13:1155–1163.
  • SULLIVAN DJ: Theories on malarial pigment formation and quinoline action. Int. 1. Parasitol. (2002) 32:1645–1653.
  • SUROLIA N, PADMANABAN G: De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem. Biophys. Res. Commun. (1992) 187:744–750.
  • BONDAY ZQ, TAKETANI S, GUPTA PD, PADMANABAN G: Heme biosynthesis by the malarial parasite. Import of delta-aminolevulinate dehydrase from the host red cell. .1 Biol. Chem. (1997) 272:21839–21846.
  • ROOS DS, CRAWFORD MJ, DONALD RG et al.: Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? Philos. Trans. R. Soc. Lond. B Biol. Li. (2002) 357:35–46.
  • VARADHARAJAN S, SAGAR BK, RANGARAJAN PN, PADMANABAN G: Localization of ferrochelatase in Plasmodium fakiparum. Biochem. 1 (2004) 384:429–436.
  • •Together with [142] this paper illustrates that predictions of localisations still require experimental proof.
  • SATO S, CLOUGH B, COATES L, WILSON RJ: Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium fakiparum. Protist (2004) 155:117–125.
  • BIRCHFIELD NB, CASIDA JE: Protoporphyrinogen oxidase of mouse and maize: target site selectivity and thiol effects on peroxidizing herbicide action. Pestic. Biochem. Physiol. (1997) 57:36–43.
  • KOCH M, BREITHAUPT C, KIEFERSAUER R et al.: Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO (2004) 23:1720–1728.
  • PUKRITTAYAKAMEE S, IMWONG M, LOOAREESUWAN S, WHITE NJ: Therapeutic responses to antimalarial and antibacterial drugs in vivax malaria. Acta Trop. (2004) 89:351–356.
  • •A comprehensive study on the antimalarial efficacy of different antibiotics.
  • CHAMBERS JA: Military aviators, special operations forces, and causal malaria prophylaxis. Mil. Med. (2003) 168:1001–1006.
  • AWAD MI, ALKADRU AM, BEHRENS RH, BARAKA OZ, ELTAYEB IB: Descriptive study on the efficacy and safety of artesunate suppository in combination with other antimalarials in the treatment of severe malaria in Sudan. Am.1. Trop. Med. Hyg. (2003) 68:153–158.
  • SCHUHWERK M, BEHRENS RH: Doxycycline as first line malarial prophylaxis: how safe is it? 1. Travel Med. (1998) 5:102.
  • MEDICINES FOR MALARIA VENTURE. (2003) Annual report 2003.
  • LELL B, KREMSNER PG: Clindamycin as an antimalarial drug: review of clinical trials. Antimicrob. Agents Chemother. (2002) 46:2315–2320.
  • •A comprehensive review on the antimalarial activity of clindamycin.
  • ADEHOSSI E, PAROLA P, FOUCAULT C et al: Three-day quinine-clindamycin treatment of uncomplicated falciparum malaria imported from the tropics. Antimicrob. Agents Chemother. (2003) 47:1173.
  • RAMHARTER M, NOEDL H, WINKLER H et al.: LI vitro activity and interaction of clindamycin combined with dihydroartemisinin against Plasmodium fakiparum. Antimicrob. Agents Chemother. (2003) 47:3494–3499.
  • WISTROM J, NORRBY SR, MYHRE EB et al.: Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. Antimicrob. Chemother. (2001) 47:43–50.
  • MAGERLEIN BJ: Lincomycin. 14. An improved synthesis and resolution of the antimalarial agent, 1'-demethy1-4'-depropy1-4'-(R)- and -(5)-pentylclindamycin hydrochloride (U-24, 729A)../. Med. Chem. (1972) 15:1255–1259.
  • BIRKENMEYER RD, KROLL SJ, LEWIS C, STERN KF, ZURENKO GE: Synthesis and antimicrobial activity of clindamycin analogues: pirlimycin, 1,2 a potent antibacterial agent. J. Med. Chem. (1984) 27:216–223.
  • ANDERSEN SL, OLOO AJ, GORDON DM et al: Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin. Infect. Dis. (1998) 26:146–150.
  • TAYLOR WR, RICHIE TL, FRYAUFF DJ et al.: Malaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya, Indonesia. Clin. Infect. Dis. (1999) 28:74–81.
  • •In-depth study on the prophylactic potential of azithromycin.
  • PUKRITTAYAKAMEE S, CLEMENS R, CHANTRA A et al: Therapeutic responses to antibacterial drugs in vivax malaria. Trans. R. Soc. Trop. Med. Hyg. (2001) 95:524–528.
  • ANDERSON SL, BERMAN J, KUSCHNER R et al: Prophylaxis of Plasmodium fakiparum malaria with azithromycin administered to volunteers. Ann. Intern. Med. (1995) 123:771–773.
  • RANQUE S, BADIAGA S, DELMONT J, BROUQUI P: Triangular test applied to the clinical trial of azithromycin against relapses in Plasmodium vivax infections. Malar. J. (2002) 1:13.
  • MILHOUS WK: Development of new drugs for chemoprophylaxis of malaria. Med. Trop. (Mars). (2001) 61:48–50.
  • TAYLOR WR, RICHIE TL, FRYAUFF DJ et al: Tolerability of azithromycin as malaria prophylaxis in adults in northeast Papua, Indonesia. Antimicrob. Agents Chemother. (2003) 47:2199–2203.
  • NA-BANGCHANG K, KANDA T, TIPAWANGSO P et al: Activity of artemether-azithromycin versus artemether-doxycycline in the treatment of multiple drug resistant falciparum malaria. Southeast Asian J. Trop. Med. Public Health (1996) 27:522–525.
  • DE VRIES PI, LE NH, LE TD et al: Short course of azithromycirdartesunate against falciparum malaria: no full protection against recrudescence. Trop. Med. Lit. Health (1999) 4:407–408.
  • KRUDSOOD S, SILACHAMROON U, WILAIRATANA P et al.: A randomized clinical trial of combinations of artesunate and azithromycin for treatment of uncomplicated Plasmodium fakiparum malaria in Thailand. Southeast Asian J. Trop. Med. Public Health (2000) 31:801–807.
  • KRUDSOOD S, BUCHACHART K, CHALERMRUT K et al: A comparative clinical trial of combinations of dihydroartemisinin plus azithromycin and dihydroartemisinin plus mefloquine for treatment of multidrug resistant falciparum malaria. Southeast Asian J. Trop. Med. Public Health (2002) 33:525–531.
  • OHRT C, WILLINGMYRE GD, LEE P, KNIRSCH C, MILHOUS W: Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. (2002) 46:2518–2524.
  • FIDOCK DA, ROSENTHAL PJ, CROFT SL, BRUN R, NWAKA S: Antimalarial drug discovery: efficacy models for compound screening. Nat. Rev Drug Discov. (2004) 3:509–520.
  • BRANDLING-BENNETT AD, OLOO AJ, KHAN B, WATKINS WM: Failure of erythromycin to improve chloroquine treatment of Plasmodium falciparum malaria in Kenya. Trans. R. Soc. Trop. Med. Hyg. (1988) 82:363–365.
  • STROMBERG A, BJORKMAN A: Ciprofloxacin does not achieve radical cure of Plasmodium falciparum infection in Sierra Leone. Trans. R. Soc. Trop. Med. Hyg. (1992) 86:373.
  • WATT G, SHANKS GD, EDSTEIN MD et al: Ciprofloxacin treatment of drug-resistant falciparum malaria. J. Infect. Dis. (1991) 164:602–604.
  • MCCLEAN KL, HITCHMAN D, SHAFRAN SD: Nornoxacin is inferior to chloroquine for falciparum malaria in northwestern Zambia: a comparative clinical trial. J. Infect. Dis. (1992) 165:904–907.
  • TRIPATHI KD, SHARMA AK, VALECHA N, KULPATI DD: Curative efficacy of norfloxacin in falciparum malaria. Indian J. Med. Res. (1993) 97:176–178.
  • URBASCHEK R, MANNEL DN, URBANCZIK R: Isoniazid protects mice against endotoxin lethality without influencing tumor necrosis factor synthesis and release. Antimicrob. Agents Chemother. (1991) 35:1666–1668.
  • PUKRITTAYAKAMEE S, PRAKONGPAN S, WANWIMOLRUK S et al: Adverse effect of rifampin on quinine efficacy in uncomplicated falciparum malaria. Antimicrob. Agents Chemother. (2003) 47:1509–1513.
  • MISSINOU MA, BORRMANN S, SCHINDLER A et al.: Fosmidomycin for malaria. Lancet (2002) 360:1941–1942.
  • ••This is the first clinical study onfosmidomycin against malaria.
  • LELL B, RUANGWEERAYUT R, WIESNER J et al: Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob. Agents Chemother. (2003) 47:735–738.
  • BORRMANN S, ADEGNIKA AA, MATSIEGUI PB et al: Fosmidomycin-clindamycin for Plasmodium falciparum infections in African children.' Infect. Dis. (2004) 189:901–908.
  • •Establishes the efficacy of a fosmidomycin-clindamycin combination.
  • SUTHERLAND CJ, ALLOUECHE A, CURTIS J et al.: Gambian children successfully treated with chloroquine can harbor and transmit Plasmodium falciparum gametocytes carrying resistance genes. Am. J. Trop. Med. Hyg. (2002) 67:578–585.
  • VON SEIDLEIN L, MILLIGAN P, PINDER M et al.: Efficacy of artesunate plus pyrimethamine-sulphadoxine for uncomplicated malaria in Gambian children: a double-blind, randomised, controlled trial. Lancet (2000) 355:352–357.
  • HALLETT RL, SUTHERLAND CJ, ALEXANDER N et al.: Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes. Antimicrob. Agents Chemother. (2004) 48:3940–3943.
  • VAN DOOREN GG, SU V, D'OMBRAIN MC, MCFADDEN GI: Processing of an apicoplast leader sequence in Plasmodium fakiparum and the Identification of a putative leader cleavage enzyme. J. Biol. Chem. (2002) 277:23612–23619.
  • WRENGER C, MULLER S: The human malaria parasite Plasmodium fakiparum has distinct organelle-specific lipoylation pathways. Ma Microbial. (2004) 53:103–113.
  • THOMSEN-ZIEGER N, SCHACHTNER J, SEEBER F: Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett. (2003) 547:80–86.
  • SEEBER F, ALIVERTI A, ZANETTI G: The plant-type ferredoxin-NADP' reductase/ferredoxin redox system as a possible drug target against apicomplexan human parasites. Curr. Pharm. Design (2004) In press.
  • MCCONKEY GA: Targeting the shikimate pathway in the malaria parasite Plasmodium fakiparum. Antimicrob. Agents Chemother. (1999) 43:175–177.

Websites

  • http://plasmodb.org The Plasmodium Genome Resource (2004).
  • http://toxodb.org The Toxoplasma Genome Resource (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.