155
Views
23
CrossRef citations to date
0
Altmetric
Review

The JNK pathway as a therapeutic target for diabetes

Pages 581-592 | Published online: 10 Jun 2005

Bibliography

  • SALTIEL AR, KAHN CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature (2001) 414:799–806.
  • SHULMAN GI: Cellular mechanisms ofinsulin resistance. J. Clin. Invest. (2000) 106:171–176.
  • WEIR GC, LAYBUTT DR, KANETO H,BONNER-WEIR S, SHARMA A: 13-Cell adaptation and decompensation during the progression of diabetes. Diabetes (2001) 50:S154–S159.
  • POITOUT V, ROBERTSON RP: Minireview: Secondary beta-cell failure in Type 2 diabetes - a convergence of glucotoxicity and lipotoxicity. Endocrinology (2002) 143:339–342.
  • SHARMA A, OLSON LK, ROBERTSON RP, STEIN R: The reduction of insulin gene transcription in HIT-T1513 cells chronically exposed to high glucose concentration is associated with loss of RIPE3b1 and STF-1 transcription factor expression. Mol. Endocrinol (1995) 9:1127–1134.
  • MORAN A, ZHANG H-J, OLSON LK, HARMON JS, POITOUT V, ROBERTSON RP: Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. ./. Clin. Invest. (1997) 99:534–539.
  • JONAS J-C, SHARMA A, HASENKAMP W et al.: Chronic hyperglycemia triggers loss of pancreatic 13 cell differentiation in an animal model of diabetes. J. Biol. Chem. (1999) 274:14112–14121.
  • WANG XZ, HARDING HP, ZHANG Y, JOLICOEUR EM, KURODA M, RON D: Cloning of mammalian Irel reveals diversity in the ER stress responses. EMBO J. (1998) 17:5708–5717.
  • TIRASOPHON W, WELIHINDA AA, KAUFMAN RI: A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinaseiendoribonuclease (kelp) in mammalian cells. Genes. Dev. (1998) 12:1812–1824.
  • HARDING HP, ZHANG Y, RON D: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature (1999) 397:271–274.
  • ARIDOR M, BALCH WE: Integration of endoplasmic reticulum signaling in health and disease. Nat. Med. (1999) 5:745–751.
  • RON D: Translational control in the endoplasmic reticulum stress response. Clin. Invest. (2002) 110:1383–1388.
  • SHI Y, VATTEM KM, SOOD R et al: Identification and characterization of pancreatic eukaryotic initiation factor 2a-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. (1998) 18:7499–7509.
  • SHI Y, TAYLOR SI, TAN SL, SONENBERG N: When translation meets metabolism: multiple links to diabetes. Endocr. Rev (2003) 24:91–101.
  • URANO F, WANG X, BERTOLOTTI A et al.: Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1.Science (2000) 287:664–666.
  • YOSHIDA H, MATSUI T, YAMAMOTO A, OKADA T, MORI K: XBP1 mRNA is induced by ATF6 and spliced by IER1 in response toER stress to produce a highly active transcription factor. Cell (2001) 107:893–903.
  • IWAWAKI T, ARM R, KOHNO K, MIURA M: A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. (2004) 10:98–102.
  • NAKATANI Y, KANETO H, KAWAMORI D et al.: Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem. (2004) 80:847–851.
  • ••An original article showing that ERstress is involved in insulin resistance.
  • KHARROUBI I, LADRIERE L, CARDOZO AK, DOGUSAN Z, CNOP M, EIZIRIK DL: Free fatty acids and cytokines induce pancreatic 0-cell apoptosis by different mechanisms: role of nuclear factor-KB and endoplasmic reticulum stress Endocrinology (2004) 145:5087–5096.
  • OZCAN U, CAO Q, YILMAZ E et al: Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science (2004) 306:457–461.
  • •An original article showing that ER stress is involved in insulin resistance.
  • KUWABARA K, MATSUMOTO M, IKEDA J et al.: Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. ./. Biol. Chem. (1996) 271:5025–5032.
  • TAMATANI M, MATSUYAMA T, YAMAGUCHI A et al: ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat. Med. (2001) 7:317–323.
  • KANETO H, XU G, FUJII N, KIM S, BONNER-WEIR S, WEIR GC: Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J. Biol. Chem. (2002) 277:30010–30018.
  • ••An original article showing that activationof the JNK pathway is involved in pancreatic 13-cell dysfunction.
  • DANDONA P, THUSU K, COOK S et al: Oxidative damage to DNA in diabetes mellitus. Lancet (1996) 347:444–445.
  • IHARA Y, TOYOKUNI S, UCHIDA K et al.: Hyperglycemia causes oxidative stress in pancreatic 0-cells of GK rats, a model of Type 2 diabetes. Diabetes (1999) 48:927–932.
  • GOROGAWA S, KAJIMOTO Y, UMAYAHARA Y et al.: Probucol preserves pancreatic 0-cell function through reduction of oxidative stress in Type 2 diabetes. Diabetes Res. Chi'. Prac. (2002) 57:1–10.
  • BAYNES JW, THORPE SR: Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes (1999) 48:1–9.
  • NISHIKAWA T, EDELSTEIN D, DU XL et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature (2000) 404:787–790.
  • BROWNLEE M: Biochemistry and molecular cell biology of diabetic complications. Nature (2001) 414:813–820.
  • KANETO H, FUJII J, MYINT T et al.: Reducing sugars trigger oxidative modification and apoptosis in pancreatic 0-cells by provoking oxidative stress through the glycation reaction. Biochem. J. (1996) 320:855–863.
  • MATSUOKA T, KAJIMOTO Y, WATADA H et al: Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest. (1997) 99:144–150.
  • TIEDGE M, LORTZ S, DRINKGERN J, LENZEN S: Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes (1997) 46:1733–1742.
  • KANETO H, KAJIMOTO Y, MIYAGAWA J et al: Beneficial effects of antioxidants for diabetes: possible protection of pancreatic 0-cells against glucose toxicity. Diabetes (1999) 48:2398–2406.
  • TANAKA Y, GLEASON CE, TRAN PO, HARMON JS, ROBERTSON RP: Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc. Natl. Acad. Li. USA (1999) 96:10857–10862.
  • KANETO H, KAJIMOTO Y, FUJITANI Yet al.: Oxidative stress induces p21 expression in pancreatic islet cells: possible implication in 0-cell dysfunction. Diabetologia (1999) 42:1093–1097.
  • KAJIMOTO Y, MATSUOKA T, KANETO H et al: Induction of glycation suppresses glucokinase gene expression in HIT-T15 cells. Diabetologia (1999) 42:1417–1424.
  • MAECHLER P, JORNOT L, WOLLHEIM CB: Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem. (1999) 274:27905–27913.
  • KANETO H, XU G, SONG K-H et al: Activation of the hexosamine pathway leads to deterioration of pancreatic 0-cell function by provoking oxidative stress. J. Biol. Chem. (2001) 276:31099–31104.
  • TANAKA Y, TRAN PO, HARMON J, ROBERTSON RP: A role of glutathione peroxidase in protecting pancreatic 13 cells against oxidative stress in a model of glucose toxicity. Proc. Nati Acad. Sci. USA (2002) 99:12363–12368.
  • SAKAI K, MATSUMOTO K, NISHIKAWA T et al.: Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic 0-cells. Biochem. Biophys. Res. Commun. (2003) 300:216–222.
  • EVANS JL, GOLDFINE ID, MADDUX BA, GRODSKY GM: Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes (2003) 52:1–8.
  • ROBERTSON RP, HARMON J, TRAN PO, POITOUT V: Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in Type 2 diabetes. Diabetes (2004) 53:S119–S124.
  • ROBERTSON RP: Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. (2004) 279:42351–42354.
  • HIBI M, LIN A, KARIN M: Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes. Dev. (1993) 7:2135–2148.
  • DERIJARD B, HIBI M, WU I-H et al: JNK1: a protein kianse stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. CO (1994) 76:1025–1037.
  • DAVIS RJ: Signal transduction by the JNK group of MAP kinases. Cell (2000) 103:239–252.
  • CHANG L, KARIN M: Mammalian MAP kinase signalling cascades. Nature (2001) 410:37–40.
  • NAKATANI Y, KANETO H, KAWAMORI D et al: Modulation of the JNK pathway in liver affects insulin resistance status. J. Biol. Chem. (2004) 279:45803–45809.
  • AGUIRRE V, DAVIS R, WHITE MF: The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of 5er307../. Biol. Chem. (2000) 275:9047–9054.
  • HIROSUMI J, TUNCMAN G, CHANG L, KARIN M, HOTAMISLIGIL GS: A central role for JNK in obesity and insulin resistance. Nature (2002) 420:333–336.
  • ••An original article showing that activationof the JNK pathway is involved in insulin resistance.
  • OHLSSON H, KARLSSON K, EDLUND T: IPF1, a homeodomain-containing-transactivator of the insulin gene. EMBO J. (1993) 12:4251–4259.
  • LEONARD J, PEERS B, JOHNSON T, FERRERI K, LEE S, MONTMINY MR: Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol. Endocrinol. (1993) 7:1275–1283.
  • MILLER CP, MCGEHEE RE, HABENER JF: IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO (1994) 13:1145–1156.
  • JONSSON J, CARLSSON L, EDLUND T, EDLUND H: Insulin-promoter-factor 1 is required for pancreas development in mice. Nature (1994) 37:606–609.
  • DUTTA S, BONNER-WEIR S, MONTMINY M, WRIGHT C: Regulatory factor linked to late-onset diabetes? Nature (1998) 392:560.
  • STOFFERS DA, ZINKIN NT, STAN OJEVIC V, CLARKE WL, HABENER JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. (1997) 15:106–110.
  • SANDER M, GERMAN MS: The beta cell transcription factors and development of the pancreas. J. Mol. Med. (1997) 75:327–340.
  • STOFFERS DA, HELLER RS, MILLER CP, HABENER JF: Developmental expression of the homeodomain protein IDX-1 mice transgenic for an IDX-1 promoter/LacZ transcriptional reporter. Endocrinology (1999) 140:5374–5381.
  • HOLLAND AM, HALE MA, KAGAMI H, HAMMER RE, MACDONALD RJ: Experimental control of pancreatic development and maintenance. Proc. Nati Acad. Sci. USA (2002) 99:12236–12241.
  • BONNER-WEIR S, TANEJA M, WEIR GC et al.: In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Li. USA (2000) 97:7999–8004.
  • FERBER S, HALKIN A, COHEN H et al.: Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. (2000) 6:568–572.
  • KOJIMA H, NAKAMURA T, FUJITA Y et al.: Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes (2002) 51:1398–1408.
  • BER I, SHTERNHALL K, PERL S et al.:Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. (2003) 22:31950–31957.
  • MORITOH Y, YAMATO E, YASUI Y, MIYAZAKI S, MIYAZAKI J: Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes (2003) 52:1163–1168.
  • TANIGUCHI H, YAMATO E, TASHIRO F, IKEGAMI H, OGIHARA T, MIYAZAKI J: 13-Cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene. Ther. (2003) 10:15–23.
  • TANG D-Q, CAO L-Z, BURKHARDT BR et al: LI vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes (2004) 53:1721–1732.
  • KANETO H, NAKATANI Y, MIYATSUKA T et al.: PDX-1NP1b fusion protein, together with Neuro D or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes (2005) 54:1009–1022.
  • PETERSEN HV, SERUP P, LEONARD J, MICHELSEN BK, MADSEN OD: Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STF1/IPF1 acting through the CT boxes. Proc. Nati Acad. Sci. USA (1994)91:10465–10469.
  • PEERS B, LEONARD J, SHARMA S, TEITELMAN G, MONTMINY MR: Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1.Mol. Endocrinol (1994) 8:1798–1806.
  • WAEBER G, THOMPSON N, NICOD P, BONNY C: Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol. Endocrinol (1996) 10:1327–1334.
  • WATADA H, KAJIMOTO Y, UMAYAHARA Y et al.: The human glucokinase gene 0-cell-type promoter: An essential role of insulin promoter factor 1 (IPF1)/PDX-1 in its activation in HIT-T15 cells. Diabetes (1996) 45:1478–1488.
  • AHLGREN U, JONSSON J, JONSSON L, SIMU K, EDLUND H: 0-cell-specific inactivation of the mouse lpfl/Pdx1 gene results in loss of the 13-cell phenotype and maturity onset diabetes. Genes. Dev. (1998) 12:1763–1768.
  • WANG H, MAECHLER P, RITZ-LASER B et al: Pdxl level defines pancreatic gene expression pattern and cell lineage differentiation. J. Biol. Chem. (2001) 276:25279–25286.
  • BRISSOVA M, SHIOTA M, NICHOLSON WE et al: Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J. Biol. Chem (2002) 277:1125–11232.
  • CHAKRABARTI SK, JAMES JC, MIRMIRA RG: Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, pdxl: importance of chromatin structure in directing promoter binding. Biol. Chem. (2002) 277:13286–13293.
  • KULKARNI RN, JHALA US, WINNAY JN, KRAJEWSKI S, MONTMINY M, KAHN CR: PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J. Clin. Invest. (2004) 114:828–836.
  • KAWAMORI D, KAJIMOTO Y, KANETO H et al.: Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun N-terminal kinase. Diabetes (2003) 52:2896–2904.
  • ••An original article showing that activationof the JNK pathway is involved in PDX-1 nucleocytoplasmic translocation.
  • SCHWARZE SR, HO A, VOCERO-AKBANI AM, DOWDY SF: In vivo protein transduction: delivery of a biologically active protein into the mouse. Science (1999) 285:1569–1572.
  • ELLIOTT G, O'HARE P: Intracellular trafficking and protein delivery by a herpesvirus structure protein. Cell (1997) 88:223–233.
  • FRANKEL AD, PABO CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell (1988) 55:1189–1193.
  • NAGAHARA H, VOCERO-AKBANI AM, SNYDER EL et al.: Transduction of full-length TAT fusion proteins into mammalian cells:TAT-p-27K'Pl induces cell migration. Nat. Med. (1998) 4:1449–1452.
  • ROTHBARD JB, GARLINGTON S, LIN Q et al.: Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. (2000) 6:1253–1257.
  • NOGUCHI H, KANETO H, WEIR GC, BONNER-WEIR S: PDX-1 protein containing its own Antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes (2003) 52: 1732-1737.
  • NOGUCHI H, MATSUSHITA M, OKITSU T et al: A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat. Med. (2004) 10:305–309.
  • BONNY C, OBERSON A, NEGRI S, SAUSE C, SCHORDERET DF: Cell-permeable peptide inhibitors of JNK: novel blockers of 0-cell death. Diabetes (2001) 50:77–82.
  • KANETO H, NAKATANI Y, MIYATSUKA T et al.: Possible novel therapy for diabetes with cell-permeable JNK inhibitory peptide. Nat. Med. (2004) 10:1128-1132.An original article showing that activation of the JNK pathway is involved in insulin resistance.
  • MANNING AM, DAVIS RJ: Targeting JNK for therapeutic benefit: from junk to gold? Nat. Rev. Drug. Dis. (2003) 2:554–565.
  • BENNETT BL, SAYDH Y, LEWIS A: JNK: a new therapeutic target for diabetes. Curr. Opin. Pharmacol. (2003) 3:420–425.
  • KANETO H, MATSUOKA T, NAKATANI Y et al.: Oxidative s tress, ER stress, and the JNK pathway in type 2 diabetes. J. Mol. Med. In press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.