466
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Genetic polymorphism of inosine-triphosphate-pyrophosphatase influences mercaptopurine metabolism and toxicity during treatment of acute lymphoblastic leukemia individualized for thiopurine-S-methyl-transferase status

, &
Pages 23-37 | Published online: 20 Dec 2009

Bibliography

  • Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006;354(2):166-78
  • Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet 2008;371(9617):1030-43
  • Pui CH, Campana D, Pei D, Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360(26):2730-41
  • Kishi S, Cheng C, French D, Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood 2007;109(10):4151-7
  • Rivera GK, Evans WE, Kalwinsky DK, Unexpectedly severe toxicity from intensive early treatment of childhood lymphoblastic leukemia. J Clin Oncol 1985;3(2):201-6
  • Evans WE, Relling MV, Rodman JH, Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998;338(8):499-505
  • Cheok MH, Pottier N, Kager L, Evans WE. Pharmacogenetics in acute lymphoblastic leukemia. Semin Hematol 2009 46(1):39-51
  • Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics. Nature 2004;429(6990):464-8
  • Kager L, Evans WE. Pharmacogenomics of acute lymphoblastic leukemia. Curr Opin Hematol 2006;13(4):260-5
  • McLeod HL, Krynetski EY, Relling MV, Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000;14(4):567-72
  • Evans WE, McLeod HL. Pharmacogenomics–drug disposition, drug targets, and side effects. N Engl J Med 2003;348(6):538-49
  • Krynetski EY, Evans WE. Pharmacogenetics of cancer therapy: getting personal. Am J Hum Genet 1998;63(1):11-6
  • Krynetski EY, Krynetskaia NF, Bianchi ME, Evans WE. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res 2003;63(1):100-6
  • Relling MV, Hancock ML, Rivera GK, Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999;91(23):2001-8
  • Barabino A, Torrente F, Ventura A, Azathioprine in paediatric inflammatory bowel disease: an Italian multicentre survey. Aliment Pharmacol Ther 2002;16(6):1125-30
  • Schwab M, Schaffeler E, Marx C, Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics 2002;12(6):429-36
  • Stocco G, Martelossi S, Barabino A, Glutathione-S-transferase genotypes and the adverse effects of azathioprine in young patients with inflammatory bowel disease. Inflamm Bowel Dis 2007;13(1):57-64
  • Teml A, Schaeffeler E, Herrlinger KR, Thiopurine treatment in inflammatory bowel disease: clinical pharmacology and implication of pharmacogenetically guided dosing. Clin Pharmacokinet 2007;46(3):187-208
  • Elion GB. The purine path to chemotherapy. Science 1989;244(4900):41-7
  • Krynetski E, Evans WE. Drug methylation in cancer therapy: lessons from the TPMT polymorphism. Oncogene 2003;22(47):7403-13
  • Yates CR, Krynetski EY, Loennechen T, Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997;126(8):608-14
  • Krynetski EY, Krynetskaia NF, Yanishevski Y, Evans WE. Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase. Mol Pharmacol 1995;47(6):1141-7
  • Somerville L, Krynetski EY, Krynetskaia NF, Structure and dynamics of thioguanine-modified duplex DNA. J Biol Chem 2003;278(2):1005-11
  • Tai HL, Krynetski EY, Yates CR, Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996;58(4):694-702
  • Hartford C, Vasquez E, Schwab M, Differential effects of targeted disruption of thiopurine methyltransferase on mercaptopurine and thioguanine pharmacodynamics. Cancer Res 2007;67(10):4965-72
  • Pui CH, Sandlund JT, Pei D, Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. Blood 2004;104(9):2690-6
  • Stocco G, Cheok MH, Crews KR, Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 2009;85(2):164-72
  • Relling MV, Pui CH, Cheng C, Evans WE. Thiopurine methyltransferase in acute lymphoblastic leukemia. Blood 2006;107(2):843-4
  • Fakhoury M, Andreu-Gallien J, Mahr A, Should TPMT genotype and activity be used to monitor 6-mercaptopurine treatment in children with acute lymphoblastic leukaemia? J Clin Pharm Ther 2007;32(6):633-9
  • McLeod HL, Coulthard S, Thomas AE, Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999;105(3):696-700
  • Dokmanovic L, Urosevic J, Janic D, Analysis of thiopurine S-methyltransferase polymorphism in the population of Serbia and Montenegro and mercaptopurine therapy tolerance in childhood acute lymphoblastic leukemia. Ther Drug Monit 2006;28(6):800-6
  • Stanulla M, Schaeffeler E, Flohr T, Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005;293(12):1485-9
  • Relling MV, Hancock ML, Boyett JM, Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93(9):2817-23
  • Schmiegelow K, Forestier E, Kristinsson J, Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 2009;23(3):557-64
  • Relling MV, Rubnitz JE, Rivera GK, High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 1999;354(9172):34-9
  • Relling MV, Yanishevski Y, Nemec J, Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998;12(3):346-52
  • Schmiegelow K, Al-Modhwahi I, Andersen MK, Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 2009;113(24):6077-84
  • Stanulla M, Schaeffeler E, Moricke A, Thiopurine methyltransferase genetics is not a major risk factor for secondary malignant neoplasms after treatment of childhood acute lymphoblastic leukemia on Berlin-Frankfurt-Munster protocols. Blood 2009;114(7):1314-8
  • Yang JJ, Cheng C, Yang W, Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 2009;301(4):393-403
  • Klein TE, Chang JT, Cho MK, Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenetics research network and knowledge base. Pharmacogenomics J 2001;1(3):167-70
  • Krishnamurthy P, Schwab M, Takenaka K, Transporter-mediated protection against thiopurine-induced hematopoietic toxicity. Cancer Res 2008;68(13):4983-9
  • Sampath J, Adachi M, Hatse S, Role of MRP4 and MRP5 in biology and chemotherapy. AAPS PharmSci 2002;4(3):E14
  • Ansari M, Sauty G, Labuda M, Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 2009;114(7):1383-6
  • Zaza G, Cheok M, Yang W, Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood 2005;106(5):1778-85
  • Ansari A, Arenas M, Greenfield SM, Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther 2008;28(8):973-83
  • Marinaki AM, Ansari A, Duley JA, Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 2004;14(3):181-7
  • von Ahsen N, Armstrong VW, Behrens C, Association of inosine triphosphatase 94C> A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study. Clin Chem 2005;51(12):2282-8
  • Zelinkova Z, Derijks LJ, Stokkers PC, Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol 2006;4(1):44-9
  • Gearry RB, Roberts RL, Barclay ML, Kennedy MA. Lack of association between the ITPA 94C> A polymorphism and adverse effects from azathioprine. Pharmacogenetics 2004;14(11):779-81
  • Hindorf U, Lindqvist M, Peterson C, Pharmacogenetics during standardised initiation of thiopurine treatment in inflammatory bowel disease. Gut 2006;55(10):1423-31
  • Van Dieren JM, Hansen BE, Kuipers EJ, Meta-analysis: inosine triphosphate pyrophosphatase polymorphisms and thiopurine toxicity in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther 2007;26(5):643-52
  • van Dieren JM, van Vuuren AJ, Kusters JG, ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut 2005;54(11):1664
  • Marsh S, Van Booven DJ. The increasing complexity of mercaptopurine pharmacogenomics. Clin Pharmacol Ther 2009;85(2):139-41
  • Bierau J, Lindhout M, Bakker JA. Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics 2007;8(9):1221-8
  • Sumi S, Marinaki AM, Arenas M, Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet 2002;111(4-5):360-7
  • Behmanesh M, Sakumi K, Abolhassani N, ITPase-deficient mice show growth retardation and die before weaning. Cell Death Differ 2009;16(10):1315-22
  • von Ahsen N, Oellerich M, Armstrong VW. Characterization of the inosine triphosphatase (ITPA) gene: haplotype structure, haplotype-phenotype correlation and promoter function. Ther Drug Monit 2008;30(1):16-22
  • Maeda T, Sumi S, Ueta A, Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency in the Japanese population. Mol Genet Metab 2005;85(4):271-9
  • Stenmark P, Kursula P, Flodin S, Crystal structure of human inosine triphosphatase. Substrate binding and implication of the inosine triphosphatase deficiency mutation P32T. J Biol Chem 2007;282(5):3182-7
  • Stepchenkova EI, Tarakhovskaya ER, Spitler K, Functional Study of the P32T ITPA variant associated with drug sensitivity in humans. J Mol Biol 2009;392(3):602-13
  • Vanderheiden BS. Genetic studies of human erythrocyte inosine triphosphatase. Biochem Genet 1969;3(3):289-97
  • Marsh S, King CR, Ahluwalia R, McLeod HL. Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet 2004;49(10):579-81
  • Okada Y, Nakamura K, Hiromura K, Pro32Thr polymorphism of inosine triphosphate pyrophosphatase gene predicts efficacy of low-dose azathioprine for patients with systemic lupus erythematosus. Clin Pharmacol Ther 2009;85(5):527-30
  • Uchiyama K, Nakamura M, Kubota T, Thiopurine S-methyltransferase and inosine triphosphate pyrophosphohydrolase genes in Japanese patients with inflammatory bowel disease in whom adverse drug reactions were induced by azathioprine/6-mercaptopurine treatment. J Gastroenterol 2009;44(3):197-203
  • Klaassen RJ, Goodman TR, Pham B, Doyle JJ. "Low-risk" prediction rule for pediatric oncology patients presenting with fever and neutropenia. J Clin Oncol 2000;18(5):1012-9
  • Kuderer NM, Dale DC, Crawford J, Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006;106(10):2258-66
  • Kuderer NM, Dale DC, Crawford J, Lyman GH. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol 2007;25(21):3158-67
  • Santolaya ME, Alvarez AM, Aviles CL, Admission clinical and laboratory factors associated with death in children with cancer during a febrile neutropenic episode. Pediatr Infect Dis J 2007;26(9):794-8
  • Gerson SL, Talbot GH, Hurwitz S, Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med 1984;100(3):345-51
  • Stocco G, Martelossi S, Barabino A, TPMT genotype and the use of thiopurines in paediatric inflammatory bowel disease. Dig Liver Dis 2005;37(12):940-5
  • Dervieux T, Chu Y, Su Y, HPLC determination of thiopurine nucleosides and nucleotides in vivo in lymphoblasts following mercaptopurine therapy. Clin Chem 2002;48(1):61-8
  • Tay BS, Lilley RM, Murray AW, Atkinson MR. Inhibition of phosphoribosyl pyrophosphate amidotransferase from ehrlich ascites-tumour cells by thiopurine nucleotides. Biochem Pharmacol 1969;18(4):936-8
  • Dervieux T, Blanco JG, Krynetski EY, Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res 2001;61(15):5810-6
  • Andersen JB, Szumlanski C, Weinshilboum RM, Schmiegelow K. Pharmacokinetics, dose adjustments, and 6-mercaptopurine/methotrexate drug interactions in two patients with thiopurine methyltransferase deficiency. Acta Paediatr 1998;87(1):108-11
  • Evans WE, Horner M, Chu YQ, Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119(6):985-9
  • Neth O, Hann I, Turner MW, Klein NJ. Deficiency of mannose-binding lectin and burden of infection in children with malignancy: a prospective study. Lancet 2001;358(9282):614-8
  • Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med 2009;360(17):1759-68
  • Davies SM, Borowitz MJ, Rosner GL, Pharmacogenetics of minimal residual disease response in children with B-precursor acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111(6):2984-90
  • Kamdem LK, Hamilton L, Cheng C, Genetic predictors of glucocorticoid-induced hypertension in children with acute lymphoblastic leukemia. Pharmacogenet Genomics 2008;18(6):507-14
  • Frazer KA, Ballinger DG, Cox DR, A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449(7164):851-61
  • Jones TS, Yang W, Evans WE, Relling MV. Using HapMap tools in pharmacogenomic discovery: the thiopurine methyltransferase polymorphism. Clin Pharmacol Ther 2007;81(5):729-34
  • Choy E, Yelensky R, Bonakdar S, Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines. PLoS Genet 2008;4(11):e1000287
  • Hartford CM, Dolan ME. Identifying genetic variants that contribute to chemotherapy-induced cytotoxicity. Pharmacogenomics 2007;8(9):1159-68
  • Huang RS, Duan S, Bleibel WK, A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc Natl Acad Sci USA 2007;104(23):9758-63
  • Huang RS, Duan S, Shukla SJ, Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am J Hum Genet 2007;81(3):427-37
  • Schwarz UI, Ritchie MD, Bradford Y, Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 2008;358(10):999-1008
  • Schroth W, Goetz MP, Hamann U, Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 2009;302(13):1429-36
  • Dervieux T, Bala MV. Overview of the pharmacoeconomics of pharmacogenetics. Pharmacogenomics 2006;7(8):1175-84
  • Gurwitz D, Rodriguez-Antona C, Payne K, Improving pharmacovigilance in Europe: TPMT genotyping and phenotyping in the UK and Spain. Eur J Hum Genet 2009;17(8):991-8
  • Veenstra DL, Higashi MK, Phillips KA. Assessing the cost-effectiveness of pharmacogenomics. AAPS PharmSci 2000;2(3):E29
  • Gurwitz D, McLeod HL. Genome-wide association studies: powerful tools for improving drug safety and efficacy. Pharmacogenomics 2009;10(2):157-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.