790
Views
5
CrossRef citations to date
0
Altmetric
Drug Safety Evaluation

The safety of pomalidomide for the treatment of multiple myeloma

, , &
Pages 535-547 | Received 10 Nov 2015, Accepted 10 Feb 2016, Published online: 16 Mar 2016

References

  • Kumar SK, Dispenzieri A, Lacy MQ, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–1128.
  • Barlogie B, Van Rhee F, Shaughnessy JD, et al. Making progress in treating multiple myeloma with total therapies: issue of complete remission and more. Leukemia. 2008;22(8):1633–1636.
  • Barlogie B, Tricot GJ, Van Rhee F, et al. Long-term outcome results of the first tandem autotransplant trial for multiple myeloma. Br J Haematol. 2006;135(2):158–164.
  • Van Rhee F, Szymonifka J, Anaissie E, et al. Total therapy 3 for multiple myeloma: prognostic implications of cumulative dosing and premature discontinuation of VTD maintenance components, bortezomib, thalidomide, and dexamethasone, relevant to all phases of therapy. Blood. 2010;116(8):1220–1227.
  • Barlogie B, Mitchell A, Van Rhee F, et al. Curing myeloma at last: defining criteria and providing the evidence. Blood. 2014;124(20):3043–3051.
  • Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–1571.
  • Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22(10):1925–1932.
  • Bjorklund CC, Lu L, Kang J, et al. Rate of CRL4(crbn) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J. 2015;5:e354.
  • Fischer ES, Bohm K, Lydeard JR, et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512(7512):49–53.
  • Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012;26(11):2326–2335.
  • Quach H, Ritchie D, Stewart AK, et al. Mechanism of action of immunomodulatory drugs (imids) in multiple myeloma. Leukemia. 2010;24(1):22–32.
  • Higgins JJ, Pucilowska J, Lombardi RQ, et al. A mutation in a novel ATP-dependent lon protease gene in a kindred with mild mental retardation. Neurology. 2004;63(10):1927–1931.
  • Xin W, Xiaohua N, Peilin C, et al. Primary function analysis of human mental retardation related gene CRBN. Mol Biol Rep. 2008;35(2):251–256.
  • Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327(5971):1345–1350.
  • Chamberlain PP, Lopez-Girona A, Miller K, et al. Structure of the human cereblon DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol. 2014;21(9):803–809.
  • Kronke J, Hurst SN, Ebert BL. Lenalidomide induces degradation of IKZF1 and IKZF3. Oncoimmunology. 2014;3(7):e941742.
  • Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate t cells by inducing degradation of t cell repressors ikaros and aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol. 2014;164(6):811–821.
  • Lopez-Girona A, Heintel D, Zhang L-H, et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol. 2011;154(3):325–336.
  • Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343(6168):305–309.
  • Kronke J, Udeshi ND, Narla A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–305.
  • Sehgal K, Das R, Zhang L, et al. Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets. Blood. 2015;125(26):4042–4051.
  • D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082–4085.
  • Li X, Liu X, Wang J, et al. Effects of thalidomide on the expression of angiogenesis growth factors in human A549 lung adenocarcinoma cells. Int J Mol Med. 2003;11(6):785–790.
  • Teo SK. Properties of thalidomide and its analogues: implications for anticancer therapy. Aaps J. 2005;7(1):E14–E19.
  • Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87(10):1166–1172.
  • Lu L, Payvandi F, Wu L, et al. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res. 2009;77(2):78–86.
  • Stewart AK. Medicine. How thalidomide works against cancer. Science. 2014;343(6168):256–257.
  • Dredge K, Marriott JB, Todryk SM, et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased th1-type immunity. J Immunol. 2002;168(10):4914–4919.
  • Haslett PA, Corral LG, Albert M, et al. Thalidomide costimulates primary human t lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the cd8+ subset. J Exp Med. 1998;187(11):1885–1892.
  • Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98(1):210–216.
  • Muller GW, Corral LG, Shire MG, et al. Structural modifications of thalidomide produce analogs with enhanced tumor necrosis factor inhibitory activity. J Med Chem. 1996;39(17):3238–3240.
  • Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and t cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunology. 1999;163(1):380–386.
  • Schafer PH, Gandhi AK, Loveland MA, et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther. 2003;305(3):1222–1232.
  • Kotla V, Goel S, Nischal S, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2:36.
  • Galustian C, Meyer B, Labarthe M-C, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother. 2009;58(7):1033–1045.
  • Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal b cells. Blood. 1996;87(5):1928–1938.
  • Urashima M, Ogata A, Chauhan D, et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein. Blood. 1996;88(6):2219–2227.
  • Jourdan M, Cren M, Robert N, et al. IL-6 supports the generation of human long-lived plasma cells in combination with either April or stromal cell-soluble factors. Leukemia. 2014;28(8):1647–1656.
  • Treon SP, Anderson KC. Interleukin-6 in multiple myeloma and related plasma cell dyscrasias. Curr Opin Hematol. 1998;5(1):42–48.
  • Bataille R, Jourdan M, Zhang XG, et al. Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest. 1989;84(6):2008–2011.
  • Johrer K, Janke K, Krugmann J, et al. Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP-1. Clin Cancer Res. 2004;10(6):1901–1910.
  • LeBlanc R, Hideshima T, Catley LP, et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood. 2004;103(5):1787–1790.
  • Muller GW, Chen R, Huang S-Y, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett. 1999;9(11):1625–1630.
  • Roda JM, Parihar R, Magro C, et al Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res. 2006;66(1):517–526.
  • Alsayed Y, Ngo H, Runnels J, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–2717.
  • Hideshima T, Chauhan D, Hayashi T, et al. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther. 2002;1(7):539–544.
  • Li S, Fu J, Ma H, et al. Lenalidomide-induced upregulation of CXCR4 in CD34+ hematopoietic cells, a potential mechanism of decreased hematopoietic progenitor mobilization. Leukemia. 2013;27(6):1407–1411.
  • Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev. 2015;34(4):575–591.
  • Andre T, Najar M, Stamatopoulos B, et al. Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells. Cancer Immunol Immunother. 2015;64(2):213–224.
  • Hideshima T, Chauhan D, Schlossman R, et al. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene. 2001;20(33):4519–4527.
  • Geitz H, Handt S, Zwingenberger K. Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade. Immunopharmacology. 1996;31(2–3):213–221.
  • Trotter TN, Li M, Pan Q, et al. Myeloma cell-derived RUNX2 promotes myeloma progression in bone. Blood. 2015;125(23):3598–3608.
  • Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of nf-kappa b. Blood. 1996;87(3):1104–1112.
  • Noll JE, Williams SA, Tong CM, et al. Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica. 2014;99(1):163–171.
  • Escoubet-Lozach L, Lin I-L, Jensen-Pergakes K, et al. Pomalidomide and lenalidomide induce p21 waf-1 expression in both lymphoma and multiple myeloma through a lsd1-mediated epigenetic mechanism. Cancer Res. 2009;69(18):7347–7356.
  • Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative cc-4047 inhibits osteoclast formation by down-regulation of pu.1. Blood. 2006;107(8):3098–3105.
  • Heider U, Kaiser M, Muller C, et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol. 2006;77(3):233–238.
  • Richardson PG, Siegel DS, Vij R, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood. 2014;123(12):1826–1832.
  • San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (mm-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–1066.
  • Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (cc4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27(30):5008–5014.
  • Dimopoulos MA. Stratus(tm) (mm 010): a single arm, phase 3b study evaluating safety and efficacy of pomalidomide (pom) + low dose dexamethasone (lodex) in patients (pts) with refractory or relapsed amd refractory multiple myeloma (rrmm). IMW Conference 2015 Abstract BP-053; 2015 Sep 23–26; Rome.
  • Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54(4):683–687.
  • McCurdy AR, Lacy MQ. Pomalidomide and its clinical potential for relapsed or refractory multiple myeloma: an update for the hematologist. Ther Adv Hematol. 2013;4(3):211–216.
  • Leleu X, Attal M, Arnulf B, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: intergroupe francophone du myelome 2009-02. Blood. 2013;121(11):1968–1975.
  • Leleu X, Karlin L, Macro M, et al. Pomalidomide plus low-dose dexamethasone in multiple myeloma with deletion 17p and/or translocation (4;14): IFM 2010-02 trial results. Blood. 2015;125(9):1411–1417.
  • Sehgal K. Comparison of intermittent and continuous dosing regimes of pomalidomide in relapsed/refractory myeloma: results of a phase ii randomised trial. ASH Annual Meeting Abstract 3205; 2013 Dec 7–10; New Orleans, LA.
  • Lacy MQ, Allred JB, Gertz MA, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011;118(11):2970–2975.
  • Richardson PG, Siegel D, Baz R, et al. Phase 1 study of pomalidomide mtd, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121(11):1961–1967.
  • Lacy MQ, McCurdy AR. Pomalidomide. Blood. 2013;122(14):2305–2309.
  • Chanan-Khan AA, Swaika A, Paulus A, et al. Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer J. 2013;3:e143.
  • San Miguel J:. Current clinical experience with anti-cd38 monoclonal antibodies: single agent activity. IMW Abstract PS-057; 2015 Sep 23–26; Rome.
  • Chari A, Lonial S, Suvannasankha A, et al. Open-label, multicenter, phase 1b study of daratumumab in combination with pomalidomide and dexamethasone in patients with at least 2 lines of prior therapy and relapsed or relapsed and refractory multiple myeloma. ASH Annual Meeting 2015 Abstract 508; 2015 Dec 5–8; Orlando, FL.
  • Badros AZ, Kocoglu MH, Ma N, et al. A phase ii study of anti pd-1 antibody pembrolizumab, pomalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma (rrmm). ASH Annual Meeting 2015 Abstract 506; 2015 Dec 5–8; Orlando, FL.
  • Raje N, Yee AJ, Richardson PG. HDAC inhibition in multiple myeloma with a focus on selective HDAC6 inhibition. IMW 2015 Conference Abstract PS-040; 2015 Sep 23–26; Rome.
  • Quayle S, Almeciga-Pinto I, Tamang D, et al. Selective hdac inhibition by ricolinostat (acy-1215) or acy-241 synergizes with imid immunomodulatory drugs in multiple myeloma (mm) and mantle cell lymphoma (mcl) cells. AACR Conference Abstract 5380; 2015 Apr 18–22; Philadelphia, PA.
  • Raje S, Bensinger W, Cole CE, et al. Ricolinostat (acy-1215), the first selective HDAC6 inhibitor, combines safely with pomalidomide and dexamethasone and shows promising early results in relapsed-and-refractory myeloma (ace-mm-102 study). ASH Annual Meeting 2015, Abstract 4228; 2015 Dec 5–8; Orlando, FL.
  • Lacy MQ, LaPlant BR, Laumann KM, et al. Pomalidomide, bortezomib and dexamethasone (PVD) for patients with relapsed lenalidomide refractory multiple myeloma (MM). ASH Annual Meeting 2014 Abstract 304; 2014 Dec 6–9; San Francisco, CA. Data used in the paper relates to the data presented at the conference which was different to the data presented in the abstract.
  • Spencer A, Badros A, Laubach J, et al. Phase 1, multicenter, open-label, dose-escaltaion, combination study (nct02103335) of pomalidomide (pom), marizomib (mrz, np1-0052), and dexamethasone (dex) in patients with relapsed and refractory multiple myleoma (mm); study npi-0052-107 preliminary results. IWM Conference 2015 Abstract OP-005; 2015 Sep 23–26; Rome.
  • Spencer A, Laubach JP, Zonder JA, et al. Phase 1, multicenter, open-label, combination study (npi-0052-107; nct02103335) of pomalidomide (pom), marizomib (mrz, npi-0052), and low-dose dexamethasone (ld-dex) in patients with relapsed and refractory multiple myeloma. ASH Annual Meeting 2015, Abstract 4220; 2015 Dec 5–8; Orlando, FL.
  • Shah JJ, Stadtmauer EA, Abonour R, et al. Carfilzomib, pomalidomide, and dexamethasone (cpd) in patients with relapsed and/or refractory multiple myeloma. Blood. 2015;126:2284–2290.
  • Rosenbaum C, Kukreti V, Zonder J, et al. Phase 1b/2 study of carfilzomib, pomalidomide, and dexamethasone (kpd) in patients (pts) with lenalidomide-exposed and/or -refractory but proteasome inhibitor (pi)-naive or -sensitive multiple myeloma: a multiple myeloma research consortium multi-center study. ASH Annual Meeting 2014 Abstract 2109; 2014 Dec 6–9; San Francisco, CA.
  • Larocca A, Montefusco V, Bringhen S, et al. Pomalidomide, cyclophosphamide, and prednisone for relapsed/refractory multiple myeloma: a multicenter phase 1/2 open-label study. Blood. 2013;122(16):2799–2806.
  • Baz R, Martin T, Alsina M, et al. Pomalidomide, cyclophosphamide, and dexamethasone is superior to pomalidomide and dexamethasone in relapsed and refractory myeloma: results of a multicenter randomized phase ii study. ASH Annual Meeting 2014 Abstract 303; 2014 Dec 6–9; San Francisco, CA.
  • Tomer MBA, Rossi A, Kwon D, et al. Clpad (clarithromycin, pomalidomide, dexamethasone) therapy in relapsed or refractory multiple myeloma. ASH Annual Meeting 2013 Abstract 1955; 2013 Dec 7–10; New Orleans, LA.
  • Schey SA, Fields P, Bartlett JB, et al. Phase i study of an immunomodulatory thalidomide analog, cc-4047, in relapsed or refractory multiple myeloma. J Clin Oncol. 2004;22(16):3269–3276.
  • Streetly MJ, Gyertson K, Daniel Y, et al. Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol. 2008;141(1):41–51.
  • Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1782–1791.
  • Palumbo A, Hajek R, Delforge M, et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med. 2012;366(19):1759–1769.
  • McCarthy PL, Owzar K, Hofmeister CC, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–1781.
  • Palumbo A, Bringhen S, Kumar SK, et al. Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data. Lancet Oncol. 2014;15(3):333–342.
  • Hoffmann M, Kasserra C, Reyes J, et al. Absorption, metabolism and excretion of [14c]pomalidomide in humans following oral administration. Cancer Chemother Pharmacol. 2013;71(2):489–501.
  • Dimopoulos MA, Leleu X, Palumbo A, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28(8):1573–1585.
  • Matous JSD, Lonial S, Harvey D, et al. Mm-008: a phase 1 trial evaluating pharmacokinetics and tolerability of pomalidomide + low dose dexamethasone in patients with relapsed or refractort multiple myeloma and renal impairment. ASH Annual Meeting 2014 Abstract 4730; 2014 Dec 6–9; San Francisco, CA.
  • Rossi AC, Aneja E, Boyer A, et al. Effect of renal and hepatic function on pomalidomide dose in patients with relpawed/refractory multiple myeloma. ASH Annual Meeting 2014 Abstract 4754; 2014 Dec 6–9; San Francisco, CA.
  • Pauff JM, Gonzalez RS, Sajnani KP, et al. Post-allograft pomalidomide and reversible hepatotoxicity. Bone Marrow Transplant. 2014;49(10):1341–1342.
  • Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (cc4047) plus low dose dexamethasone (pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (mm). Leukemia. 2010;24(11):1934–1939.
  • Pawlyn C, Khan MS, Muls A, et al. Lenalidomide-induced diarrhea in patients with myeloma is caused by bile acid malabsorption that responds to treatment. Blood. 2014;124(15):2467–2468.
  • Siegel DSD, Richardson G, Vij R, et al. Long-term safety and efficacy of pomalidomide (pom) with or without low-dose dexamethasone (lodex) in relapsed and refractory multiple myeloma (rrmm) patients enrolled in the mm-002 phase ii trial. ASCO Meeting Abstracts 2013. 2013;31(15_suppl):8588.
  • Gooding S, Lau I-J, Sheikh M, et al. Double refractory myeloma; analysis of clinical outcomes and medical-resource utilisation in a single centre. ASH Annual Meeting 2013. 2013;122:1727.
  • Tarant JL, Ashcroft J, Feyler S, et al. Treatment patterns and survival in multiple myeloma patients sequentially exposed to thalidomide, bortezomib and lenalidomide in a UK Single Centre. Blood (ASH Annu Meet Abstr 2013). 2013;122:5380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.