182
Views
51
CrossRef citations to date
0
Altmetric
Review

Gene delivery using functional dendritic polymers

, PhD, , PhD, , PhD & , PhD
Pages 27-38 | Published online: 09 Jan 2009

Bibliography

  • Zhu J, Tang A, Law LP, et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjugate Chem 2005;16(1):139-46
  • Verma IM, Somia N. Gene therapy – promises, problems and prospects. Nature 1997;389(6648):239-42
  • Lotze MT, Kost TA. Viruses as gene delivery vectors: Application to gene function, target validation, and assay development. Cancer Gene Ther 2002;9(8):692-9
  • Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: Technology development and clinical trials. Technol Cancer Res Treat 2003;2(5):471-85
  • Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors – a promising tool for gene therapy. Appl Biochem Biotechnol 2006;133(1):9-29
  • Nishikawa M, Huang L. Nonviral vectors in the new millennium: Delivery barriers in gene transfer. Hum Gene Ther 2001;12(8):861-70
  • El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004;94(1):1-14
  • Krämer M, Stumbé JF, Grimm G, et al. Dendritic polyamines: Simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chem BioChem 2004;5(8):1081-7
  • Yudovin-Farber I, Yanay C, Azzam T, et al. Quaternary ammonium polysaccharides for gene delivery. Bioconjugate Chem 2005;16(5):1196-203
  • Liu YM, Reineke TM. Poly(glycoamidoamine)s for gene delivery: stability of polyplexes and efficacy with cardiomyoblast cells. Bioconjugate Chem 2006;17(1):101-8
  • Cavazzana-Calvo M, Thrasher A, Mavillo F. The future of gene therapy. Nature 2004;427(6977):779-81
  • Vögtle F, Gestermann S, Hesse R, et al. Functional dendrimers. Prog Polym Sci 2000;25(7):987-1041
  • Fréchet JMJ, Tomalia DA. Dendrimers and other dendritic polymers. Chichester. J Wiley & Sons; 2001 and references cited therein
  • Newkome GR, Moorefield CN, Vögtle F. Dendrimers and dendrons. Concepts, syntheses, perspectives. Weinheim: Wiley-VCH; 2001 and references cited therein
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev 2005;57(15):2106-29
  • Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23(12):1517-26
  • Tomalia DA, Fréchet JMJ. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci, Part A: Polym Chem 2002;40(16):2719-28
  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 2001;22(5):405-17
  • Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002;54(4):459-76
  • Vandermeulen GWM, Klok HA. Peptide/protein hybrid materials: Enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. Macromol Biosci 2004;4(4):383-98
  • Liu MJ, Kono K, Fréchet JMJ. Water-soluble dendrimer-poly(ethylene glycol) starlike conjugates as potential drug carriers. J Polym Sci, Part A: Polym Chem 1999;37(17):3492-503
  • Liu MJ, Kono K, Fréchet JMJ. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J Control Release 2000;65(1-2):121-31
  • Gajbhiye V, Kumar PV, Tekade RK, et al. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 2007;134:415-29
  • Kumar PV, Agashe H, Dutta T, et al. PEGylated dendritic architecture for development of a prolonged drug delivery system for an antitubercular drug. Curr Drug Deliv 2007;4(1):11-19
  • Kaminskas LM, Boyd BJ, Karellas P, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol Pharm 2008;5(3):449-63
  • Lasic DD, Needham D. The ‘Stealth’ liposome: A prototypical biomaterial. Chem Rev 1995:958;2601-28 and references cited therein
  • Pantos A, Tsiourvas D, Sideratou Z, et al. Interactions of complementary PEGylated liposomes and characterization of the resulting aggregates. Langmuir 2004;20(15):6165-72
  • Silvander M, Hansson P, Edwards K. Liposomal surface potential and bilayer packing as affected by PEG-lipid inclusion. Langmuir 2000;16(8):3696-702
  • Kaasgaard T, Mouritsen OG, Jørgensen K. Screening effect of PEG on avidin binding to liposome surface receptors. Int J Pharm 2001;214(1-2):63-65
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Delivery Rev 2004;56(11):1649-59
  • Couvreur P, Gref R, Andrieux K, et al. Nanotechnologies for drug delivery: Application to cancer and autoimmune diseases. Progr Solid State Chem 2006;34(2-4):231-5
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today 2007;2(3):14-21
  • Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28(33):4947-67
  • Chari RVJ. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc Chem Res 2008;41(1):98-107
  • Petrak K. Essential properties of drug-targeting delivery systems. Drug Deliv Today 2005;10(23-24):1667-73
  • Mammen M, Choi S, Whitesides GM. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998;37(20):2754-94
  • Kitov PI, Bundle DR. On the nature of the multivalency effect: A thermodynamic model. J Am Chem Soc 2003;125(52):16271-84
  • Badjic JD, Nelson A, Cantrill SJ, et al. Multivalency and cooperativity in supramolecular chemistry. Acc Chem Res 2005;38(9):723-32
  • Tung C-H, Weissleder R. Arginine containing peptides as delivery vectors. Adv Drug Deliv Rev 2003;55(2):281-94
  • Futaki S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev 2005;57(4):547-58
  • Rothbard JB, Jessop TC, Wender PA. Adaptive translocation: The role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 2005;57(4):495-504
  • Liu Z, Li M, Cui D, Fei J. Macro-branched cell-penetrating peptide design for gene delivery. J Control Release 2005;102(3):699-710
  • Wender PA, Galliher WC, Goun EA, et al. The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 2008;60(4-5):452-72
  • Theodossiou TA, Pantos A, Tsogas I, et al. Guanidinylated dendritic molecular transporters: prospective drug delivery systems and application in cell transfection. Chem Med Chem 2008;3(11):1635-43
  • Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003;278(45):44826-31
  • Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA 1995;92(16):7297-301
  • Kubasiak LA, Tomalia DA. Dendri-poly(amidoamines) and dendri-poly(propyleneimines). In: Amiji MM, editor, Polymeric Gene Delivery: Principles and applications. Boca Raton: CRC Press; 2004. p. 133-57
  • Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Delivery Rev 2005;57(15):2177-202
  • Guillot-Nieckowski M, Eisler S, Diederich F. Dendritic vectors for gene transfection. New J Chem 2007;31(7):1111-27
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004;33(1):43-63 and references cited therein
  • Lee JH, Lim YB, Choi JS, et al. Polyplexes assembled with internally quaternized PAMAM-OH dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjugate Chem 2003;14(6):1214-21
  • Potocky TB, Silvius J, Menon AK, et al. HeLa cell entry by guanidinium-rich β-peptides: Importance of specific cation-cell surface interactions. ChemBioChem 2007;8(8):917-26
  • Onda M, Yoshihara K, Koyano H, et al. Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers. A comparison of microscopic and macroscopic interfaces. J Am Chem Soc 1996;118(36):8524-30
  • Choi JS, Nam K, Park J, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 2004;99(3):445-56
  • Kim T, Baek J, Yoon JK, et al. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading to transfection. Bioconjugate Chem 2007;18(2):309-17
  • Tziveleka LA, Psarra AMG, Tsiourvas D, et al. Synthesis and characterization of guanidinylated poly(propylene imine) dendrimers as gene transfection agents. J Control Release 2007;117(1):137-46
  • Kim T, Baek J, Bai CZ, Park J. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials 2007;28(11):2061-7
  • Kono K, Akiyama H, Takahashi T, et al. Transfection Activity of Polyamidoamine Dendrimers Having Hydrophobic Amino Acid Residues in the Periphery. Bioconjugate Chem 2005;16(1):208-14
  • Wood KC, Little SR, Langer R, et al. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem Int Ed 2005;44(41):6704-8
  • Wood KC, Azarin SM, Arap W, et al. Tumor-targeted gene delivery using molecularly engineered hybrid polymers functionalized with a tumor-homing peptide. Bioconjugate Chem 2008;19(2):403-5
  • Kostiainen MA, Hardy JG, Smith DK. High affinity multivalent DNA binding by using low-molecular-weight dendrons. Angew Chem Int Ed 2005;44(17):2556-9
  • Hardy JG, Kostiainen MA, Smith DK, et al. Dendrons with spermine surface groups as potential building blocks for nonviral vectors in gene therapy. Bioconjugate Chem 2006;17(1):172-8
  • Tang MX, Redemann CT, Szoka FC. In vitro. gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chem 1996;7(6):703-14
  • Dennig J, Duncan E. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. Rev Mol Biotechnol 2002;90(3-4):339-47
  • Kainthan RK, Gnanamani M, Ganguli M, et al. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA. Biomaterials 2006;2731:5377-90
  • Tziveleka LA, Psarra AMG, Tsiourvas D, et al. Synthesis and evaluation of functional hyperbranched polyether polyols as prospected gene carriers. Int J Pharm 2008;356(1-2):314-24
  • Wang D, Narang AS, Kotb M, et al. Novel branched poly(ethylenimine)-cholesterol water soluble lipopolymers for gene delivery. Biomacromolecules 2002;3(6):1197-207
  • Sun HK, Ji HJ, Kyung CC, et al. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J Control Release 2005;104(1):223-32
  • Kim WJ, Yockman JW, Lee M, et al. Soluble Flt.-1. gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release 2005;106(1-2):224-34
  • Kim WJ, Yockman JW, Jeong JH, et al. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J Control Release 2006;114(3):381-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.