772
Views
214
CrossRef citations to date
0
Altmetric
Review

Magnetic targeting for site-specific drug delivery: applications and clinical potential

&
Pages 53-70 | Published online: 09 Jan 2009

Bibliography

  • Arruebo M, Fernandez-Pacheco R, Ibarra MR, Santamaria J. Magnetic nanoparticles for drug delivery. Nanotoday 2007;2(3):22-32
  • Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 2005;21(7):637-47
  • Johannsen M, Thiesen B, Jordan A, et al. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 2005;64(3):283-92
  • Alexiou C, Jurgons R, Seliger C, et al. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res 2007;27(4A):2019-22
  • Jurgons R, Seliger C, Hilpert A, et al. Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter 2006;18(38):S2893-S902
  • Ito A, Ino K, Hayashida M, et al. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng 2005;11(9-10):1553-61
  • Ito A, Takizawa Y, Honda H, et al. Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng 2004;10(5-6):833-40
  • Shimizu K, Ito A, Yoshida T, et al. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B Appl Biomater 2007;82(2):471-80
  • Cunningham CH, Arai T, Yang PC, et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 2005;53(5):999-1005
  • Caruthers SD, Winter PM, Wickline SA, Lanza GM. Targeted magnetic resonance imaging contrast agents. Methods Mol Med 2006;124, (Magnetic Resonance Imaging):387-400
  • Tiefenauer LX. Magnetic nanoparticles as contrast agents for medical diagnosis. Nanotechnol Biol Med 2007:29/1-/0
  • Waters EA, Wickline SA. Contrast agents for MRI. Basic Res Cardiol 2008;103(2):114-21
  • Yoo B, Pagel MD. An overview of responsive MRI contrast agents for molecular imaging. Front Biosci 2008;13:1733-52
  • Goya GF, Grazu V, Ibarra MR. Magnetic nanoparticles for cancer therapy. Curr Nanosci 2008;4(1):1-16
  • Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnology 2008;3(3):139-43
  • Ito A, Honda H. Functionalized magnetic nanoparticles for tissue engineering. N Res Biomater 2007;197-216
  • Alexiou C, Arnold W, Klein RJ, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000;60(23):6641-8
  • Voltairas PA, Fotiadis DI, Michalis LK. Hydrodynamics of magnetic drug targeting. J Biomech 2002;35(6):813-21
  • Alexiou C, Jurgons R, Schmid RJ, et al. Magnetic drug targeting: biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 2003;11(3):139-49
  • Alexiou C, Schmidt A, Klein R, et al. Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magnetism Magn Mater 2002;252(1-3):363-6
  • Hafeli UO. Magnetically modulated therapeutic systems. Int J Pharm 2004;277(1-2):19-24
  • Derfus AM, von Maltzahn G, Harris TJ, et al. Remotely triggered release from magnetic nanoparticles. Adv Mater 2007;19(22):3932-6
  • Hu SH, Liu TY, Liu DM, Chen SY. Controlled Pulsatile Drug Release from a Ferrogel by a High-Frequency Magnetic Field. Macromol 2007;40(19):6786-8
  • Kim DH, Nikles DE, Johnson DT, Brazel CS. Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia. J Magnetism Magn Mater 2008;320(19):2390-6
  • Olsvik O, Popovic T, Skjerve E, et al. Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 1994;7(1):43-54
  • Kuznetsov AA, Filippov VI, Kuznetsov OA, et al. New ferrocarbon adsorbents for magnetically guided transport of anticancer drugs. J Magnetism Magn Mater 1999;194(1-3):22-30
  • Kreuter J. Evaluation of nanoparticles as drug-delivery systems I: preparation methods. Pharm Acta Helvetiae 1983;58(7):196-209
  • Kreuter J. Factors influencing the body distribution of polyacrylic nanoparticles. Drug Target Proc Symp 1985;51-63
  • Hafeli UO, Pauer GJ. In vitro and in vivo toxicity of magnetic microspheres. J Magnetism Magn Mater 1999;194(1-3):76-82
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53(2):283-318
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19(3):311-30
  • Chouly C, Pouliquen D, Lucet I, et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996;13(3):245-55
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004;377(Pt 1):159-69
  • Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998;24(12):1113-28
  • Chorny M, Polyak B, Alferiev IS, et al. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. Faseb J 2007;21(10):2510-19
  • Luck M, Paulke BR, Schroder W, et al. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res 1998;39(3):478-85
  • Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. Part 2. Effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 1998;46(3):255-63
  • Schutt W, Gruttner C, Teller J, et al. Biocompatible magnetic polymer carriers for in vivo radionuclide delivery. Artif Organs 1999;23(1):98-103
  • Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 1995;16(2,3):321-33
  • Gref R, Luck M, Quellec P, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000;18(3,4):301-13
  • Moghimi SM, Hunter AC. Capture of stealth nanoparticles by the body's defences. Crit Rev Ther Drug Carrier Syst 2001;18(6):527-50
  • Mueller BG, Kissel T. Camouflage nanospheres: A new approach to bypassing phagocytic blood clearance by surface modified particulate carriers. Pharm Pharmacol Lett 1993;3(2):67-70
  • Sinha VR, Aggarwal A, Trehan A. Biodegradable PEGylated microspheres and nanospheres. Am J Drug Deliv 2004;2(3):157-71
  • Tobio M, Gref R, Sanchez A, et al. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 1998;15(2):270-5
  • Bazile D, Prud'homme C, Bassoullet MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995;84(4):493-8
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263(5153):1600-3
  • Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002;23(7):1553-61
  • Lu Y, Sega E, Leamon CP, Low PS. Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv Drug Deliv Rev 2004;56(8):1161-76
  • Horak D, Babic M, Mackova H, Benes MJ. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 2007;30(11):1751-72
  • Bonkovsky HL, Ponka P, Bacon BR, et al. An update on iron metabolism: summary of the Fifth International Conference on Disorders of Iron Metabolism. Hepatology 1996;24(3):718-29
  • Sibille JC, Kondo H, Aisen P. Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology 1988;8(2):296-301
  • Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989;152(1):167-73
  • Kaminski MD, Rosengart AJ. Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J Magnetism Magn Mater 2005;293(1):398-403
  • Lubbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. J Surg Res 2001;95(2):200-6
  • Ngaboni Okassa L, Marchais H, Douziech-Eyrolles L, et al. Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Int J Pharm 2005;302(1-2):187-96
  • Astete CE, Sabliov CM. Synthesis of poly(DL-lactide-Co-glycolide) nanoparticles with entrapped magnetite by emulsion evaporation method. Particulate Sci Technol 2006;24(3):321-8
  • Liu X, Kaminski MD, Chen H, et al. Synthesis and characterization of highly-magnetic biodegradable poly(-lactide-co-glycolide) nanospheres. J Control Release 2007;119(1):52-8
  • Okassa LN, Marchais H, Douziech-Eyrolles L, et al. Optimization of iron oxide nanoparticles encapsulation within poly(D,L-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm 2007;67(1):31-8
  • Zavisova V, Koneracka M, Strbak O, et al. Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles. J Magnetism Magn Mater 2007;311(1):379-82
  • Naik S, Carpenter EE. Poly(DL-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier. J Appl Phys 2008;103(7 Pt 2):07A313/1-07A/3
  • Gomez-Lopera SA, Arias JL, Gallardo V, Delgado AV. Colloidal Stability of Magnetite/Poly(lactic acid) Core/Shell Nanoparticles. Langmuir 2006;22(6):2816-21
  • Polyak B, Fishbein I, Chorny M, et al. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 2008;105(2):698-703
  • Gang J, Park SB, Hyung W, et al. Magnetic poly e-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J Drug Target 2007;15(6):445-53
  • Yang J, Park SB, Yoon HG, et al. Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 2006;324(2):185-90
  • Arias JL, Gallardo V, Ruiz MA, Delgado AV. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm 2008;69(1):54-63
  • Yang J, Lee H, Hyung W, et al. Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J Microencapsul 2006;23(2):203-12
  • Subramani K. Applications of nanotechnolgoy in drug delivery systems for the treatment of cancer and diabetes. Int J Nanotechnol 2006;3(4):557-80
  • Jiang W, Yang HC, Yang SY, et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magnetism Magn Mater 2004;283(2-3):210-4
  • Kawaguchi T, Hasegawa M. Structure of dextran-magnetite complex: relation between conformation of dextran chains covering core and its molecular weight. J Mater Sci Mater Med 2000;11(1):31-5
  • Ciofani G, Raffa V, Obata Y, et al. Magnetic driven alginate nanoparticles for targeted drug delivery. Curr Nanosci 2008;4(2):212-8
  • Ma HL, Qi XR, Maitani Y, Nagai T. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 2007;333(1-2):177-86
  • Zhu A, Yuan L, Liao T. Suspension of Fe3O4 nanoparticles stabilized by chitosan and o-carboxymethylchitosan. Int J Pharm 2008;350(1-2):361-8
  • Yuan Q, Venkatasubramanian R, Hein S, Misra RDK. A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. Acta biomater 2008;4(4):1024-37
  • Li L, Chen D, Zhang Y, et al. Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnol 2007;18(40):405102/1-/6
  • Kim EH, Ahn Y, Lee HS. Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. J Alloys Compounds 2007;434-435:633-6
  • Markovic G, Mutschler T, Woellner K, Gauglitz G. Application of surface acoustic waves for optimisation of biocompatibility of carboxymethylated dextran surfaces. Surf Coatings Technol 2006;201(3-4):1282-8
  • Miller RA, Brady JM, Cutright DE. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 1977;11(5):711-9
  • Chu CC. The degradation and biocompatibility of suture materials. Crit Rev Biocompatibility 1985;1(3):261-322
  • Chu CC. Degradation phenomena of two linear aliphatic polyester fibers used in medicine and surgery. Polym 1985;26(4):591-4
  • Brady JM, Cutright DE, Miller RA, Barristone GC. Resorption rate, route, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat. J Biomed Mater Res 1973;7(2):155-66
  • Williams DF. Review. Biodegradation of surgical polymers. J Mater Sci 1982;17(5):1233-46
  • Miller ND, Williams DF. The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain. Biomaterials 1984;5(6):365-8
  • Ali SA, Doherty PJ, Williams DF. Mechanisms of polymer degradation in implantable devices. 2. Poly(DL-lactic acid). J Biomed Mater Res 1993;27(11):1409-18
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28(1):5-24
  • O'Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 1997;28(1):25-42
  • Liu X, Kaminski MD, Riffle JS, et al. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation. J Magnetism Magn Mater 2007;311(1):84-7
  • Zhao H, Gagnon J, Hafeli UO. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres. Biomagn Res Technol 2007;5:2
  • Mandal TK. Effect of solvent on the characteristics of pentamidine loaded microcapsule. J Biomater Sci Polym Ed 1999;10(1):1-17
  • Mandal TK, Lopez-Anaya A, Onyebueke E, Shekleton M. Preparation of biodegradable microcapsules containing zidovudine (AZT) using solvent evaporation technique. J Microencapsul 1996;13(3):257-67
  • Mandal TK, Shekleton M, Onyebueke E, et al. Effect of formulation and processing factors on the characteristics of biodegradable microcapsules of zidovudine. J Microencapsul 1996;13(5):545-57
  • Feng S, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. Journal of Controlled Release: Official Journal of the Controlled Release Society 2001;71(1):53-69
  • Scholes PD, Coombes AGA, Illum L, et al. Detection and determination of surface levels of Poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release 1999;59(3):261-78
  • Vandervoort J, Ludwig A. Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int J Pharm 2002;238(1-2):77-92
  • Quintanar-Guerrero D, Ganem-Quintanar A, Allemann E, et al. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D,L-lactic acid) nanoparticles prepared by an emulsion-diffusion technique. J Microencapsul 1998;15(1):107-19
  • Verrecchia T, Huve P, Bazile D, et al. Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process. J Biomed Mater Res 1993;27(8):1019-28
  • Verrecchia T, Spenlehauer G, Bazile DV, et al. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J Control Release 1995;36(1-2):49-61
  • Yuan JJ, Armes SP, Takabayashi Y, et al. Synthesis of Biocompatible Poly[2-(methacryloyloxy)ethyl phosphorylcholine]-Coated Magnetite Nanoparticles. Langmuir 2006;22(26):10989-93
  • Wan S, Huang J, Guo M, et al. Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)-oligo(aspartic acid) hybrids. J Biomed Mater Res A 2007;80(4):946-54
  • Zhu A, Yuan L, Dai S. Preparation of Well-Dispersed Superparamagnetic Iron Oxide Nanoparticles in Aqueous Solution with Biocompatible N-Succinyl-O-carboxymethylchitosan. J Phys Chem C 2008;112(14):5432-8
  • Zur Muehlen A, Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie 1998;53(8):552-5
  • de Chasteigner S, Fessi H, Devissaguet JP, Puisieux F. Comparative study of the association of itraconazole with colloidal drug carriers. Drug Dev Res 1996;38(2):125-33
  • Sjostrom B, Kronberg B, Carlfors J. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. I: Influence of emulsification and surfactant concentration. J Pharm Sci 1993;82(6):579-83
  • Morel S, Ugazio E, Cavalli R, Gasco MR. Thymopentin in solid lipid nanoparticles. Int J Pharm 1996;132(1,2):259-61
  • Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 1993;89(1):R9-R12
  • Mueller RH, Maassen S, Weyhers H, et al. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int J Pharm 1996;138(1):85-94
  • Igartua M, Saulnier P, Heurtault B, et al. Development and characterization of solid lipid nanoparticles loaded with magnetite. Int J Pharm 2002;233(1-2):149-57
  • Pang XJ, Zhou J, Chen JJ, et al. Synthesis of ibuprofen loaded magnetic solid lipid nanoparticles. IEEE Transactions on Magnetics 2007;43(6):2415-7
  • Forbes ZG, Yellen BB, Barbee KA, Friedman G. An approach to targeted drug delivery based on uniform magnetic fields. IEEE Transactions on Magnetics 2003;39(5, Pt. 2):3372-7
  • Iacob G, Rotariu O, Strachan NJ, Hafeli UO. Magnetizable needles and wires: modeling an efficient way to target magnetic microspheres in vivo. Biorheology 2004;41(5):599-612
  • Koda J, Venook A, Walser E, Goodwin S. A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur J Cancer 2002;38(Suppl 7):S18
  • Wilson MW, Kerlan RK Jr, Fidelman NA, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite: initial experience with four patients. Radiology 2004;230(1):287-93
  • Lubbe AS, Bergemann C, Alexiou C. Targeting tumors with magnetic drugs. Tumor Target Cancer Ther 2002;379-88
  • Lubbe AS, Bergemann C, Huhnt W, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 1996;56(20):4694-701
  • Lubbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996;56(20):4686-93
  • Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2007;2(8):495-9
  • Mathieu JB, Martel S. Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference 2006;1:472-5
  • Mathieu JB, Martel S. Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach. Biomed Microdevices 2007;9(6):801-8
  • Mathieu JB, Martel S, Yahia LH, et al. Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels. Biomed Mater Eng 2005;15(5):367-74
  • Tamaz S, Gourdeau R, Chanu A, et al. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng 2008;55(7):1854-63
  • Forbes Zachary G, Yellen Benjamin B, Halverson Derek S, et al. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans Biomed Eng 2008;55(2):643-9
  • Yellen BB, Forbes ZG, Halverson DS, et al. Targeted drug delivery to magnetic implants for therapeutic applications. J Magn Magn Mater 2005;293(1):647-54
  • Gilchrist RK, Medal R, Shorey WD, et al. Selective inductive heating of lymph nodes. Ann Surg 1957;146(4):596-606
  • Turner RD, Rand RW, Bentson JR, Mosso JA. Ferromagnetic silicone necrosis of hypernephromas by selective vascular occlusion to the tumor: a new technique. J Urol 1975;113(4):455-9
  • Freeman MW, Arrott A. Magnetism in Medicine. J Appl Phys 1960;31:S404
  • Meyers PH, Cronic F, Nice CM Jr. Experimental Approach in the Use and Magnetic Control of Metallic Iron Particles in the Lymphatic and Vascular System of Dogs as a Contrast and Isotopic Agent. Am J Roentgenol Radium Ther Nucl Med 1963;90:1068-77
  • Frei EH, Driller J, Neufeld HN, et al. The POD and its applications. Med Res Eng 1966;5(4):11-8
  • Alksne JF. Magnetically controlled intravascular catheter. Surgery 1968;64(1):339-45
  • Alksne JF. Stereotactic thrombosis of intracranial aneurysms. Neurology 1970;20(4):376
  • Alksne JF, Fingerhut AG. Magnetically controlled metallic thrombosis of intracranial aneurysms. A preliminary report. Bull Los Angeles Neurol Soc 1965;30(3):153-5
  • Zimmermann U, Pilwat G. Organ specific application of drugs using cellular capsule systems. Zeitschrift fuer Naturforschung, C: J Biosci 1976;31C(11-12):732-6
  • Mosbach K, Schroder U. Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett 1979;102(1):112-6
  • Senyei A, Widder K, Czerlinski G. Magnetic guidance of drug-carrying microspheres. J Appl Phys 1978;49(6):3578-83
  • Widder KJ, Senyel AE, Scarpelli GD. Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med 1978;158(2):141-6
  • Kato T, Nemoto R, Mori H, et al. Magnetic microcapsules for targeted delivery of anticancer drugs. Appl Biochem Biotechnol 1984;10:199-211
  • Morimoto Y, Akimoto M, Sugibayashi K, et al. Drug-carrier property of albumin microspheres in chemotherapy. IV. Antitumor effect of single-shot or multiple-shot administration of microsphere-entrapped 5-fluorouracil on Ehrlich ascites or solid tumor in mice. Chem Pharm Bull (Tokyo) 1980;28(10):3087-92
  • Morimoto Y, Sugibayashi K, Okumura M, Kato Y. Biomedical applications of magnetic fluids. i. Magnetic guidance of ferro-colloid-entrapped albumin microsphere for site specific drug delivery in vivo. J Pharmacobiodyn 1980;3(5):264-7
  • Widder KJ, Morris RM, Poore G, et al. Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natil Acad Sci USA 1981;78(1):579-81
  • Widder KJ, Morris RM, Poore GA, et al. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 1983;19(1):135-9
  • Widder KJ, Senyei AE. Magnetic albumin microspheres in drug delivery. Microspheres Drug Ther: Pharm, Immunol, Med Aspects 1984;393-411
  • Gupta PK, Hung CT, Rao NS. Ultrastructural disposition of adriamycin-associated magnetic albumin microspheres in rats. J Pharm Sci 1989;78(4):290-4
  • Hafeli UO, Sweeney SM, Beresford BA, et al. Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 1995;22(2):147-55
  • Hafeli UO, Sweeney SM, Beresford BA, et al. Magnetically directed poly(lactic acid) 90Y-microspheres: novel agents for targeted intracavitary radiotherapy. J Biomed Mater Res 1994;28(8):901-8
  • Kuehnle AR, Kuehnle MR, inventors; (USA) assignee. Magnetophoretic particles and apparatus for delivery of substances into cells. Application: US, US patent 94-319521, 5516670; 1996
  • Chan DCF, inventor (University Technology Corp., USA) assignee. Magneto-biolistic methods. Application: US, US patent 96-617685, 5753477. 19960319; 1998
  • Mah C, Zolotukhin I, Fraites T, et al. Microsphere-Mediated Delivery of Recombinant AAV Vectors In Vitro And In Vivo [abstract]. Mol Ther 2000;1:S239-42
  • Plank C, Scherer F, Schillinger U, Anton M. Magnetofection: enhancement and localization of gene delivery with magnetic particles under the influence of a magnetic field. J Gene Med 2000;2(24)
  • Hughes C, Galea-Lauri J, Farzaneh F, Darling D. Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol Ther 2001;3(4):623-30
  • Scherer F, Anton M, Schillinger U, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002;9(2):102-9
  • Mah C, Fraites TJ Jr, Zolotukhin I, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol Ther 2002;6(1):106-12
  • Barry ME, Pinto-Gonzalez D, Orson FM, et al. Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Hum Gene Ther 1999;10(15):2461-80
  • Lechardeur D, Sohn KJ, Haardt M, et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 1999;6(4):482-97
  • Dean DA, Strong DD, Zimmer WE. Nuclear entry of nonviral vectors. Gene Ther 2005;12(11):881-90
  • Rolland A. Nuclear gene delivery: the Trojan horse approach. Expert Opin Drug Deliv 2006;3(1):1-10
  • Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005;7(5):657-63
  • Plank C, Scherer F, Schillinger U, et al. Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J Liposome Res 2003;13(1):29-32
  • Krotz F, Sohn HY, Gloe T, et al. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res 2003;40(5):425-34
  • Plank C, Anton M, Rudolph C, et al. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin Biol Ther 2003;3(5):745-58
  • Plank C, Schillinger U, Scherer F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 2003;384(5):737-47
  • Xenariou S, Griesenbach U, Ferrari S, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 2006;13(21):1545-52
  • Brownlie A, Uchegbu IF, Schatzlein AG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int J Pharm 2004;274(1-2):41-52
  • Clamme JP, Krishnamoorthy G, Mely Y. Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochim Biophys Acta 2003;1617(1-2):52-61
  • Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 2005;11(6):990-5
  • Anderson DG, Peng W, Akinc A, et al. A polymer library approach to suicide gene therapy for cancer. Proc Natl Acad Sci USA 2004;101(45):16028-33
  • Peng W, Anderson DG, Bao Y, et al. Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate 2007;67(8):855-62
  • Eliyahu H, Makovitzki A, Azzam T, et al. Novel dextran-spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene Ther 2005;12(6):494-503
  • Yudovin-Farber I, Yanay C, Azzam T, et al. Quaternary ammonium polysaccharides for gene delivery. Bioconjug Chem 2005;16(5):1196-203
  • Hosseinkhani H, Azzam T, Tabata Y, Domb AJ. Dextran-spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene Ther 2004;11(2):194-203
  • Eliyahu H, Joseph A, Azzam T, et al. Dextran-spermine-based polyplexes: evaluation of transgene expression and of local and systemic toxicity in mice. Biomaterials 2006;27(8):1636-45
  • Alexiou C, Diehl D, Henninger P, et al. A High Field Gradient Magnet for Magnetic Drug Targeting. IEEE Transactions on Applied Superconductivity 2006;16(2):1527-30
  • Gleich B, Hellwig N, Bridell H, et al. Design and Evaluation of Magnetic Fields for Nanoparticle Drug Targeting in Cancer. IEEE Transactions on Nanotechnology 2007;6(2):164-70
  • Vyas SP, Jain SK. Preparation and in vitro characterization of a magnetically responsive ibuprofen-loaded erythrocytes carrier. J Microencapsul 1994;11(1):19-29
  • Jain S, Jain SK, Dixit VK. Magnetically guided rat erythrocytes bearing isoniazid: preparation, characterization, and evaluation. Drug Dev Ind Pharm 1997;23(10):999-1006
  • Jain S, Jain SK, Dixit VK. Erythrocytes-based delivery of isoniazid: Preparation and in vitro characterization. Indian Drugs 1995;32(10):471-6
  • Braehler M, Georgieva R, Buske N, et al. Magnetite-Loaded Carrier Erythrocytes as Contrast Agents for Magnetic Resonance Imaging. Nano Lett 2006;6(11):2505-9
  • Consigny PM, Silverberg DA, Vitali NJ. Use of endothelial cells containing superparamagnetic microspheres to improve endothelial cell delivery to arterial surfaces after angioplasty. J Vasc Interv Radiol 1999;10(2 Pt 1):155-63
  • Pislaru SV, Harbuzariu A, Agarwal G, et al. Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation 2006;114(1 Suppl):I314-8
  • Pislaru SV, Harbuzariu A, Gulati R, et al. Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol 2006;48(9):1839-45
  • Muthana M, Scott SD, Farrow N, et al. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther 2008;15(12):902-10
  • Fujita K, Okimoto O, Harada T, Isoai M, Yamazaki M, inventors; (Toda Kogyo Corp, Japan) assignee. Manufacture of needle-like magnetic iron oxide particle powders. Application: JP, JP patent 93-193099, 07025619. 19930707; 1995
  • Furst EM, Suzuki C, Fermigier M, Gast AP. Permanently linked monodisperse paramagnetic chains. Langmuir Lett 1998;14(26):7334-6
  • Yamashita K, Yamazaki M, Matsumoto M, et al, inventors; (Toda Kogyo Corp, Japan) assignee. Needle-like ferric oxide or iron hydroxyoxide granulated material, its manufacture, and manufacture of magnetic iron oxide powder for magnetic recording from it. Application: JP, JP patent 93-166121, 06345439. 19930610; 1994
  • Dreyfus R, Baudry J, Roper ML, et al. Microscopic artificial swimmers. Nature 2005;437(7060):862-5
  • Kuhn SJ, Finch SK, Hallahan DE, Giorgio TD. Proteolytic Surface Functionalization Enhances in vitro Magnetic Nanoparticle Mobility through Extracellular Matrix. Nano Lett 2006;6(2):306-12
  • Mitragotri S. Transdermal drug delivery using low-frequency sonophoresis. BioMEMS Biomedical Nanotechnol 2006;3:223-36
  • Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science 1995;269(5225):850-3
  • Alexiou C, Arnold W, Hulin P, et al. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magnetism Magn Mater 2001;225(1-2):187-93
  • Babincova M, Leszczynska D, Sourivong P, et al. Principles of magnetodynamic chemotherapy. Med Hypotheses 2004;62(3):375-7
  • Lemke AJ, Senfft von Pilsach MI, Lubbe A, et al. MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur Radiol 2004;14(11):1949-55
  • Jain TK, Morales MA, Sahoo SK, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005;2(3):194-205
  • Jain TK, Reddy MK, Morales MA, et al. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008;5(2):316-27
  • Nobuto H, Sugita T, Kubo T, et al. Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 2004;109(4):627-35
  • Goodwin SC, Bittner CA, Peterson CL, Wong G. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci 2001;60(1):177-83
  • Viroonchatapan E, Ueno M, Sato H, et al. Preparation and characterization of dextran magnetite-incorporated thermosensitive liposomes: an on-line flow system for quantifying magnetic responsiveness. Pharm Res 1995;12(8):1176-83
  • Jain TK, Richey J, Strand M, et al. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials 2008;29(29):4012-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.