1,261
Views
241
CrossRef citations to date
0
Altmetric
Reviews

Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy

&
Pages 865-878 | Published online: 28 Jul 2009

Bibliography

  • United States Centers for Disease Control and Prevention (CDC). Cancer Statistics. Cancer Incidence and Mortalitity Data 2007. Available from: http://apps.nccd. cdc.gov/uscs/
  • American Cancer Society. Cancer Facts and Figures 2008. Available from: http://www.cancer.org/downloads/STT/2008CAFFfinalseculred.pdf.
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Nie S, Xing Y, Kim GJ, et al. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257-88
  • Fukumori Y, Ichikawa H. Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 2006;17(1):1-28
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54(5):631-51
  • Portney NG, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006;384(3):620-30
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58(14):1532-55
  • Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Colloid Interface Sci 2000;64(1-3):143-53
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003;20(5):357-403
  • Cho KJ, Wang X, Nie SM, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14(5):1310-6
  • Allen TM. Long-circulating (Sterically Stabilized) liposomes for targeted drug-delivery. Trends Pharmacol Sci 1994;15(7):215-20
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92(7):1343-55
  • Woodle MC. Sterically stabilized liposome therapeutics. Adv Drug Deliv Rev 1995;16:249-65
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47(1):113-31
  • Gupta RB, Kompella UB. Nanoparticle Technology for Drug Delivery. Drugs and the Pharmaceutical Sciences. Vol. 159. 2006, New York: Taylor and Francis Group, LLC
  • Kim S. Liposomes as carriers of cancer-chemotherapy – current status and future-prospects. Drugs 1993;46(4):618-38
  • Gregoriadis G, Florence AT. Liposomes in drug delivery – clinical, diagnostic and ophthalmic potential. Drugs 1993;45(1):15-28
  • LaVan DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 2002;1(1):77-84
  • Shuai XT, Ai H, Nasongkla N, et al. Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release 2004;98(3):415-26
  • Moghimi SM. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anti Cancer Agents Med Chem 2006;6:553-61
  • Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 1995;41(1):2-13
  • Kwon GS. Diblock copolymer nanoparticles for drug delivery. Crit Rev Ther Drug Carrier Syst 1998;15(5):481-512
  • Kim DW, Kim SY, Kim HK, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 2007;18(12):2009-14
  • Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004;90:2085-91
  • Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med 2008;59:251-65
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics; an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82
  • Bonnemann H, Richards RM. Nanoscopic metal particles – synthetic methods and potential applications. Eur J Inorg Chem 2001;2455-80
  • Alekseeva AV, Bogatyrev VA, Khlebtsov BN, et al. Gold nanorods: synthesis and optical properties. Colloid J 2006;68(6):661-78
  • Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004;14(14):2161-75
  • Durr NJ, Larson T, Smith DK, et al. Two-photon luminescence imaging of cancer cells using molecularly targeted nanorods. Nano Lett 2007;7:941-5
  • Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2006;79(939):248-53
  • Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. Nmr Biomed 2004;17(7):484-99
  • Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60(11):1252-65
  • Karabutova AA, Savateeva EV, Oraevsky AA. Optoacoustic tomography: new modality of laser diagnostic systems. Laser Phys 2003;13(5):711-23
  • Kolkman R, Steenbergen W, van Leeuwen TG. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode. Lasers Med Sci 2006;21(3):134-9
  • Kim K, Huang SW, Ashkenazi S, et al. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl Phys Lett 2007;90(22):223901
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538-44
  • Pinaud F, Michalet X, Bentolila LA, et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 2006;27(9):1679-87
  • Huang XH, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115-20
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549-54
  • Ivkov R, DeNardo SJ, Daum W, et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res 2005;11:733-9
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Drug Discov 2002;2:750-63
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347-60
  • Moghimi SM, Hunter CA, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53(2):283-318
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003;55:403-19
  • Bazile D, Prudhomme C, Bassoullet MT, et al. Stealth me.peg-pla nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995;84(4):493-8
  • Jeon SI, Lee JH, Andrade JD, et al. Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory. J Colloid Interface Sci 1991;142(1):149-58
  • Garnett MC. Adv Drug Deliv Rev 2001;53:171-216
  • Taylor AE, Granger DN. Equivalent pore modeling – vesicles and channels. Federation Proc 1983;42(8):2440-5
  • Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent vx-2 rabbit tumours using a novel alpha(v)beta(3)-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 2003;63:5838-43
  • Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998;95(8):4607-12
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, in advances in enzyme regulation. 2001;41:189-207
  • Chavanpatil MD, Khdair A, Panyam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 2006;6(9-10):2651-63
  • Torchilin VP. Drug targeting. Eur J Pharm Sci 2000;11:S81-91
  • Yokoyama M, Okano T, Sakurai Y, et al. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier ssytem. J Drug Target 1999;7:171-86
  • Yuan F. Vascular-permeability in human tumor xenograft-molecular-size dependence and cuttoff size. Cancer Res 1995;55:3752-6
  • Torchilin V. Recent advances in lioposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006;23:1417-50
  • Langer R. Drug delivery and targeting. Nature 1998;392(6679):5-10
  • Warenius HM, Galfre G, Bleehen NM, et al. Attempted targeting of a monoclonal-antibody in a human-tumor xenograft system. Eur J Cancer Clin Oncol 1981;17:1009-15
  • Albanell J, Baselga J. Trastuzumab, a humanized anti-HER2 monoclonal antibody for the treatment of breast cancer. Drugs Today 1999;35:931-46
  • Ferrara N. VEGF as a therapeutic target in cancer. Oncology 2005;69(Suppl 3):11-6
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001;1:118-29
  • Baselga J, Norton L, Albanell J, et al. Recombinant humanized anti-HER2 antibody (HerceptinTM) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998;58:2825-31
  • Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 2003;42(5):439-62
  • Gatter KC. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 1983;36(5):539-45
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today 2007;2(3):14-21
  • Nagy A, Schally AV. Targeting cytotoxic conjugates of somatostatin, luteinizing hormone-releasing hormone and bombesin to cancers expressing their receptors: a ‘smarter’ chemotherapy. Curr Pharm Design 2005;11(9):1167-80
  • Stella B, Arpicco S, Peracchia MT, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 2000;89:1452-64
  • O'Reilly RK, Joralemon MJ, Hawker CJ, et al. Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. J Polymer Sci A Polym Chem 2006;44(17):5203-17
  • Luo LB, Tam J, Maysinger D, et al. Cellular internalization of poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymer micelles. Bioconjug Chem 2002;13(6):1259-65
  • Savic R, Luo LB, Eisenberg A, et al. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003;300(5619):615-8
  • Desset S, Spalla O, Lixon P, et al. From powders to dispersions in water: effect of adsorbed molecules on the redispersion of alumina particles. Langmuir 2001;17(21):6408-18
  • Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998;282(5391):1111-4
  • Filali M, Meier MAR, Schubert US, et al. Star-block copolymers as templates for the preparation of stable gold nanoparticles. Langmuir 2005;21(17):7995-8000
  • Kim BS, Qiu JM, Wang JP, et al. Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett 2005;5(10):1987-91
  • Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004;25(15):3029-40
  • Paciotti GF, Myer L, Weinreich D, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004;11(3):169-83
  • Alexiou C, Jurgons R, Seliger G, et al. Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 2006;6(9-10):2762-8
  • Wang H, Huff TB, Zweifel DA, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 2005;102(44):15752-6
  • Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709-11
  • Lee JH, Jun YW, Yeon SI, et al. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed 2006;45(48):8160-2
  • Lee HY, Li Z, Chen K, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008;49(8):1371-9
  • Cheon J, Lee JH. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 2008;141(12):1630-40
  • Rotello V. Nanoparticles. Building blocks for nanotechnology. In: Lockwood DJ, editor, Nanostructure Science and Technology. Springer Science+Business Media, Inc., New York, NY; 2004
  • Nasongkla N, Bey E, Ren JM, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 2006;6(11):2427-30
  • Yang J, Lee CH, Park J, et al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem 2007;17(26):2695-705
  • Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des 2006;12(36):4685-701
  • Johnson BK. Flash nanoprecipitation of organic actives via confined micromixing and block copolymer stabilization, in department of chemical engineering. Princeton University: Princeton; 2003
  • Gindy ME, Panagiotopoulos AZ, Prud'homme RK. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures. Langmuir 2008;24(1):83-90
  • Brick MC, Palmer HJ, Whitesides TH. Formation of colloidal dispersions of organic materials in aqueous media by solvent shifting. Langmuir 2003;19(16):6367-80
  • Liu Y, Cheng CY, Prud'homme RK, et al. Mixing in a multi-inlet vortex mixer (MIVM) for flash nanoprecipitation. Chem Eng Sci 2007;63(11):2829-42
  • Gindy ME. Modular approach toward multifunctional nanoparticles for integrated drug delivery, targeting and diagnostics, in chemical engineering. Princeton University: Princeton; 2008
  • Ungun B, Prud'homme RK, Budijono SJ, et al. Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Expr 2009;17(1):80-86
  • Akbulut M, Ginart P, Gindy ME, et al. Generic method for preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation. Adv Funct Mater 2009;19(5):718-25
  • Gindy ME, Ji SX, Hoye TR, et al. Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density. Biomacromolecules 2008;9:2705-11
  • Bartlett DW, Su H, Hildebrandt IJ, et al. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 2007;104(39):15549-54
  • Johnson BK, Prud'homme RK. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 2003;56(10):1021-4
  • Horn D, Rieger J. Organic nanoparticles in the aqueous phase – theory, experiment, and use. Angew Chem Int Ed 2001;40(23):4330-61
  • Liu Y. Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release., in PhD Thesis, department of chemical engineering. Princeton University; 2007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.