566
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Nanotechnology controlled drug delivery for treating bone diseases

&
Pages 851-864 | Published online: 28 Jul 2009

Bibliography

  • Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polymer Edn 2007;18:241-68
  • Anderson DG, Burdick JA, Langer R. Smart biomaterials. Science 2004;305:1923-4
  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
  • Bone diseases, Medline Plus. A service of the US National Library of Medicine and the National Institutes of Health. Available from: http://www.nlm.nih.gov/medlineplus/bonediseases.html#cat22 [Last accessed 16 February 2009]
  • National Osteoporosis Foundation. Available from: http://www.nof.org/osteoporosis/diseasefacts.htm and http://www.nof.org/patientinfo/medications.htm [Last accessed 16 April 2009]
  • American Academy of Orthopedic Surgeons (AAOS). Available from: http://www.aaos.org/Research/stats/Arthritis.pdf [Last accessed 16 February 2009]
  • Prevalence and incidence of Paget's disease of bone. Available from: http://www.wrongdiagnosis.com/p/pagetbone/prevalence.htm [Last accessed 16 February 2009]
  • What are the key statistics about bone cancer, American Cancer Society. Available from: http://www.cancer.org/docroot/cri/content/cri_2_4_1x_what_are_the_key_statistics_for_bone_cancer_2.asp? [Last accessed 16 February 2009]
  • Paget's Disease of Bone. Available from: http://www.niams.nih.gov/Health_Info/Bone/Pagets/medical_treatment.asp [Last accessed 16 April 2009]
  • Ishizaki J, Waki Y, Takahashi-Nishioka T, et al. Selective drug delivery to bone using acidic oligopeptites. J Bone Miner Metab 2009;27:1-8
  • Ezra A, Golomb G. Administration routes and delivery systems of biosphosphonates for the treatment of bone resorption. Adv Drug Deliv Rev 2000;42:145-95
  • Anitua E, Sanchez M, Orive G, et al. Delivering growth factors for therapeutics. Trends Pharmacol Sci 2007;29:37-41
  • Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target 2007;15:241-52
  • Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharm Res 2006;23:1-30
  • Gonzalez B, Colilla M, Vallet-Regi M. Time-delayed release of bioencapsulates: a novel controlled delivery concept for bone implant technologies. Chem Mater 2008;20:4826-34
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004;3:785-96
  • Liu H, Webster TJ. Bioinspired nanocomposites for orthopedic Applications. In: Webster TJ, editor, Nanotechnology for the Regeneration of Hard and Soft Tissues. Singapore: World Scientific; 2007. p. 1-52
  • Ishida O, Maruyama K, Sasaki K. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 1999;190:49-56
  • Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 2000;60:4440-45
  • Popat KC, Eltgroth M, LaTempa TJ, et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 2007;3:1878-81
  • Sara ES, Chen J, Au L, et al. Gold nanocages for biomedical applications. Adv Mater 2007;19:3177-84
  • Liu TY, Hu SH, Liu DM, et al. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 2009;4:52-65
  • Huang XH, EI-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115-20
  • Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology 2008;19:295101
  • Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng 2005;11:1-8
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55:329-47
  • Kujala S, Ryhanen J, Danilov A, et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 2003;24:4691-97
  • Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 2004;27:2060-5
  • McCarron PA, Marouf WM, Donnelly RF, et al. Enhanced surface attachment of protein-type targeting ligands to poly(lactide-co-glycolide) nanoparticles using variable expression of polymeric acid functionality. J Biomed Mater Res 2008;87A:873-84
  • Choi SW, Kim WS, Kim JH. Surface-functionalized nanoparticles for controlled drug delivery. Methods Mol Biol 2005;303:121-31
  • Choi SK, Kim JH. Design of surface-modified poly(D,L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release 2007;122:24-30
  • Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 2006;58:226-42
  • Wang D, Miller SC, Kopeckova P, Kopecek J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 2005;57:1049-76
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47:113-31
  • Liu H, Farrell S, Uhrich K. Drug release characteristics of unimolecular polymeric micelles. J Control Release 2000;68:167-74
  • Riess G. Micellization of block copolymers. Prog Polym Sci 2003;28:1107-70
  • Lee JS, Bae JW, Joung YK, et al. Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. Int J Pharm 2008;346:57-63
  • Nishiyama N, Kataoka K. Current state, achievement, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006;112:630-48
  • Nishiyama N, Kataoka K. Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug formation. Adv Polym Sci 2006;193:67-101
  • Putman D. Polymers for gene delivery across length scales. Nat Mater 2006;5:439-51
  • Li Y, Pei Y, Zhang X, et al. PEGylated PLGA nanoparticles as protein carrier: synthesis, preparation and biodistribution in rats. J Control Release 2001;71:203-11
  • Jang JS, Kim SY, Lee SB, et al. Poly(ethylene glycol)/poly(ϵ-caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: the role of charge groups and molecular weight in particle formation, cytotoxicity, and transfection. J Control Release 2006;113:173-82
  • Kushibiki T, Tabata Y. Preparation of poly(ethylene glycol) induced cationized gelatin as a non-vial gene carrier. J Biomater Sci Polym Ed 2005;16:1447-61
  • Cai Y, Pan H, Xu X, et al. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system. Chem Mater 2007;19:3081-3
  • Cai Y, Tang R. Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem 2008;18:3775-87
  • Berry CC, Curtis ASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2003;36:R198-206
  • Xu C, Sun S. Monodisperse magnetic nanoparticles for biomedical applications. Polym Int 2007;56:821-6
  • Balasundaram G, Webster TJ. Applications of magnetic nanoparticles for the treatment of osteoporosis. Mater Res Soc Symp Proc 2007;1019:1019-FF02-06
  • Pareta RA, Taylor E, Webster TJ. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles. Nanotechnology 2008;19:265101
  • Tran P, Sarin L, Hurt RH, et al. Titanium surfaces with adherent selenium nanoclusters as a novel anti-cancer orthopedic material. J Biomed Mater Res A (In press)
  • Navarro-Alarcon M, Lopez-Martinez MC. Essentiality of selenium in the human body: relationship with different diseases. Sci Total Environ 2000;249:347-71
  • Kopeikin VV, Valueva SV, Kipper AI, et al. Synthesis of selenium nanoparticles in aqueous solutions of poly(vinylpyrrolidone) and morphological characteristics of the related nanocomposites. Polym Sci A 2003;45:374-9
  • Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomed 2008;3:391-396
  • Nawroth T, Rusp M, May RP. Magnetic liposomes and entrapping: time-resolved neutron scattering TR-SANS and electron microscopy. Phys B Condens Matter 2004;350:E635-38
  • Matsuo T, Sugita T, Kubo T, et al. Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res A 2003;66A:747-54
  • Choi SK, Kim WS, Kim JH. Surface modification of functional nanoparticles for controlled drug delivery. J Disper Sci Technol 2003;24:475-87
  • Biondi M, Ungaro F, Qualia F, et al. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008;60:229-42
  • Balasundaram G. Nanomaterials for better orthopedics. In: Webster TJ, editor, Nanotechnology for the regeneration of hard and soft tissues. Singapore: World Scientific; 2007. p. 53-78
  • Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanostructured metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004;19:4731-39
  • Webster TJ, Ergun C, Doremus RH, et al. enhanced osteoblast functions on nanophase ceramics. J Biomed Mater Res 2000;51:475-9
  • Khang D, Lu J, Yao C, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008;29:970-83
  • Tran P, Sarin L, Hurt R, et al. Promising orthopedic materials for bone cancer patient: Titanium coated with selenium nanoclusters. Proceeding of 34th Northeast Bioengineering Conference, Providence, USA; 2008. p. 262-3
  • Kim KH, Kwon TY, Kim SY, et al. Preparation and characterization of anodized titanium surfaces and their effect on osteoblast responses. J Oral Implantol 2006;32:8-13
  • Yao C, Webster TJ. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J Nanosci Nanotechnol 2006;6:2682-92
  • Yao C, Webster TJ. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. In: Webster TJ, editor, Nanotechnology for the Regeneration of Hard and Soft Tissues. Singapore: World Scientific; 2007. p. 79-106
  • Yao C, Perla V, McKenzie JL, et al. Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion. J Biomed Nanotechnol 2005;66:68-73
  • Balasundaram G, Yao C, Webster TJ. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 2007;84A:447-53
  • Popat KC, Eltgroth M, LaTempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 2007;28:4880-8
  • Chun AL, Moralez JG, Webster TJ, Fenniri H. Helical rosette nanotubes: a biomimetic coating for orthopedics. Biomaterials 2005;26:7304-9
  • Zhang LJ, Chen YP, Rodriguez J, et al. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomed 2008 (In press)
  • Zhang LJ, Myles AJ, Fenniri H, Webster TJ. Novel biomimetic RGD modified hydrogels with improved cytocompatibility properties for bone tissue engineering applications. Biomaterials 2009 (In press)
  • Zhao B, Hu H, Mandal SK, et al. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 2005;17:3235-41
  • Zanello LP, Zhao B, Hu H, et al. Bone cell proliferation on carbon nanotubes. Nano Lett 2006;6:562-7
  • Sirivisoot S, Yao C, Xiao X, et al. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 2007;18:365102
  • Kim JY, Khang D, Lee JE, et al. Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. J Biomed Mater Res A 2009;88A:419-26
  • Usui Y, Aoki K, Narita N, et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 2008;4:240-6
  • Kloss FR, Gassner R, Preiner J, et al. The role of oxygen termination of nanocrystalline diamond on immobilization of BMP-2 and subsequent bone formation. Biomaterials 2008;29:2433-42
  • Yang L, Sheldon BW, Webster TJ. Orthopedic diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. J Biomed Mater Res A 2009 (In press), doi:10.1002/jbm.a.32227
  • Yang L, Sheldon BW, Webster TJ. The impact of diamond nanocrystallinity on osteoblast functions. Biomaterials 2009 (In press), doi: 10.1016/j.biomaterials.2009.03.014
  • Leach JK. Multifunctional cell-instructive materials for tissue regeneration. Regen Med 2006;1:447-55
  • Salvay DM, Shea LD. Inductive tissue engineering with protein and DNA-releasing scaffolds. Mol Biosyst 2006;2:36-48
  • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008;60:184-98
  • Piskin E, Isoglu A, Bolgen N, et al. In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. J Biomed Mat Res A 2009 doi:10.1002/jbm.a.32157
  • Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27(16):3115-24
  • Xu HHK, Weir MD, Simon CG. Injectable and strong nanoapatite scaffolds for cell/growth factor delivery and bone regeneration. Dental Mater 2008;24:1212-22
  • Hosseinkhani H, Hosseinkhani M, Khademhosseini A, et al. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 2007;117:380-6
  • Jabbarzadeh E, Nair LS, Khan YM, et al. Apatite nano-crystalline surface modification of poly (lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption. J Biomater Sci Polymer Edn 2007;18:1141-52
  • Yoon JJ, Chung HJ, Lee HJ, et al. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J Biomed Mater Res 2006;79:934-42
  • Jeon O, Song SJ, Kang SW, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly (L-lactic-co-glycolic acid) scaffold. Biomaterials 2007;28:2763-71
  • Basmanav FB, Kose GT, Hasirci V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 2008;29:4195-204
  • Wei G, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater 2008;18:3568-82
  • Wei G, Jin Q, Giannobile WV, et al. The enhancement of osteogenesis by nanofibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28:2087-96
  • Vogelson CT. Advances in drug delivery systems. Modern Drug Discov 2001;4:49-50
  • Feynman R. There's Plenty of Room at the Bottom. Lecture at an American Physical Society meeting, Caltech, CA. December 29, 1959
  • Taniguchi N. On the Basic Concept of Nano-Technology. Proc. Intl. Conf. Prod. London, Part II, British Society of Precision Engineering, 1974
  • Kayser O, Lemke A, Hernandez-Tejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;(6):3-5
  • Thomasin C, Corradin G, Ying M, et al. Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly (lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response. J Control Release 1996;41:131-45
  • Sanchez A, Gupta RK, Alonso MJ, et al. Pulsed controlled-released system for potential use in vaccine delivery. J Pharm Sci 1996;85:547-52
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002;7:569-79
  • Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001;46:125-48
  • Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 2002;54:79-98
  • Berner B, Dinh SM. Electronically Controlled Drug Delivery, CRC Press, London, UK, 1998
  • Hafeli UO. Magnetically modulated therapeutic systems. Int J Pharm 2004;277:19-24
  • Southwood LL, Frisbie DD, Kawcak CE, et al. Delivery of growth factors using gene therapy to enhance bone healing. Vet Surg 2004;33:565-78
  • Rose FR, Hou Q, Oreffo RO. Delivery system for bone growth factors-the new players in skeletal regeneration. J Pharm Pharmacol 2004;56:415-27
  • Franceschi RT. Biological approaches to bone regeneration by gene therapy. J Dent Res 2005;84:1093-103
  • Rasubala L, Yoshikawa H, Nagata K, et al. Platelet-derived growth factor and bone morphogenetic protein in the healing of mandibular fractures in rats. Br J Oral Maxillofac Surg 2003;41:173-8
  • Morishita N, Nakagami H, Morishita R, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005;334:1121-6
  • Rozanova N, Zhang JZ. Metal and magnetic nanostructures for cancer detection, imaging and therapy. J Biomed Nanotechnol 2008;4:377-99
  • Glass GG. Osteoarthritis. Dis Mon 2006;52:343-62
  • Bone tumor. Available from: http://orthoinfo.aaos.org/topic.cfm?topic=A00074&return_link=0 [Last accessed 16 April 2009]
  • Win KY, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005;26:2713-22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.