1,332
Views
402
CrossRef citations to date
0
Altmetric
Reviews

Gold nanoparticles: opportunities and challenges in nanomedicine

, & , PhD
Pages 753-763 | Published online: 21 Apr 2010

Bibliography

  • Jemal A, Siegel R, Ward E, Cancer statistics. CA Cancer J Clin 2009;59(4):225-49
  • Stewart BW, Coates AS. Cancer prevention: a global perspective. J Clin Oncol 2005;23(2):392-403
  • Edwards PP, Thomas JM. Gold in a metallic divided state – from faraday to present-day nanoscience13. Angew Chem Int Ed 2007;46(29):5480-6
  • Aaseth J, Haugen M, Forre O. Rheumatoid arthritis and metal compounds-perspectives on the role of oxygen radical detoxification. Analyst 1998;123(1):3-6
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Xu P, Van Kirk EA, Zhan Y, Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew Chem Int Ed 2007;46(26):4999-5002
  • Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428(6982):487-92
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303(5665):1818-22
  • Chompoosor A, Han G, Rotello VM. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols. Bioconjug Chem 2008;19(7):1342-5
  • Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005;105(4):1025-102
  • Murphy CJ, Gole AM, Stone JW, Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 2008;41(12):1721-30
  • Bruchez M Jr, Moronne M, Gin P, Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281(5385):2013-16
  • Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281(5385):2016-18
  • Uyeda HT, Medintz IL, Jaiswal JK, Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 2005;127(11):3870-8
  • Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci USA 2002;99(8):5018-23
  • Hong R, Fischer NO, Verma A, Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 2004;126(3):739-43
  • Dubertret B, Skourides P, Norris DJ, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002;298(5599):1759-62
  • Gao X, Cui Y, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Mattoussi H MJ, Goldman ER, Anderson GP, Self-assembly of CdSe-Zns quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 2000;122(49):12142-50
  • Hayat M. Colloidal gold: principles, methods and applications: academic, San Diego, CA; 1989
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951;11:55-75
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 1973;241:20-2
  • Brust M, Walker M, Bethell D, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994:801-2
  • Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 1999;15(11):3782-9
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751-60
  • Sperling RA, Gil PR, Zhang F, Biological applications of gold nanoparticles. Chem Soc Rev 2008;37(9):1896-908
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006;6(4):662-8
  • Agasti SS, Chompoosor A, You C-C, Photoregulated release of caged anticancer drugs from gold nanoparticles. J Am Chem Soc 2009;131(16):5728-9
  • Kim CK, Ghosh P, Pagliuca C, Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc 2009;131(4):1360-1
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15:897-900
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010;6(1):12-21
  • Kam NWS, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway13. Angew Chem Int Ed 2006;45(4):577-81
  • Thoren PE, Persson D, Lincoln P, Norden B. Membrane destabilizing properties of cell-penetrating peptides. Biophys Chem 2005;114(2-3):169-79
  • Kichler A, Mason AJ, Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim Biophys Acta 2006;1758(3):301-7
  • de la Fuente JM, Berry CC. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 2005;16(5):1176-80
  • Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2008;2(8):1639-44
  • Tkachenko AG, Xie H, Coleman D, Multifunctional gold nanoparticle, àípeptide complexes for nuclear targeting. J Am Chem Soc 2003;125(16):4700-1
  • Cheng YC, Samia A, Meyers JD, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008;130(32):10643-7
  • Bhirde AA, Patel V, Gavard J, Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009;3(2):307-16
  • El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006;239(1):129-35
  • Patra CR, Bhattacharya R, Wang E, Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 2008;68(6):1970-8
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Del 2008;5(3):309-19
  • Bhattacharya R, Patra CR, Earl A, Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine 2007;3:224-38
  • Patra CR, Bhattacharya R, Mukherjee P. Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mat Chem 2010;20(3):547-54
  • Shi X, Wang S, Meshinchi S, Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007;3(7):1245-52
  • Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005;57(15):2203-14
  • Dreaden EC, Mwakwari SC, Sodji QH, Tamoxifen, aipoly(ethylene glycol), aithiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem 2009;20(12):2247-53
  • Tannock IF. Tumor physiology and drug resistance. Cancer Metastasis Rev 2001;20(1-2):123-32
  • Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49(23):6449-65
  • Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990;9(3):253-66
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12_Part_1):6387-92
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15(7-8):457-64
  • Maeda H, Fang J, Inutsuka T, Kitamoto Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int immunopharmacol 2003;3(3):319-28
  • Northfelt D, Martin F, Working P, Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. J Clin Pharmacol 1996;36(1):55-63
  • Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res 2003;20(9):1337-50
  • Joshi HM, Bhumkar DR, Joshi K, Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 2006;22(1):300-5
  • Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006;61(3):1027-40
  • Shukla R, Bansal V, Chaudhary M, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005;21(23):10644-54
  • Connor EE, Mwamuka J, Gole A, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1(3):325-7
  • Perrault SD, Walkey C, Jennings T, Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 2009;9(5):1909-15
  • Dreher MR, Liu W, Michelich CR, Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006;98(5):335-44
  • Paciotti GF, Myer L, Weinreich D, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004;11(3):169-83
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41(2):147-62
  • Pitsillides C, Joe E, Wei X, Selective cell targeting with lightabsorbing microparticles and nanoparticles. Biophysical J 2003;84:4023-32
  • Hede S, Huilgol N. ‘Nano’: the new nemesis of cancer. J Cancer Res Ther 2006;2(4):186-95
  • Chanda N, Kan P, Watkinson LD, Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of 198AuNP-GA nanoconstruct in prostate tumor-bearing mice. Nanomed Nanotechnol Biol Med 2010;6(2):201-9
  • von Maltzahn G, Park J-H, Agrawal A, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 2009;69(9):3892-900
  • Maltzahn Gv, Centrone A, Park J-H, SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 2009;21(31):3175-80
  • Wood BJ, Ramkaransingh JR, Fojo T, Percutaneous tumor ablation with radiofrequency. Cancer 2002;94(2):443-51
  • Schmidt C. The Kanzius machine: a new cancer treatment idea from an unexpected source. J Natl Cancer Inst 2008;100(14):985-6
  • Gannon CJ, Patra CR, Bhattacharya R, Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnol 2008;6:2-11
  • Curley SA, Cherukuri P, Briggs K, Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J Exp Ther Oncol 2008;7(4):313-26
  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2006;79(939):248-53
  • Kattumuri V, Katti K, Bhaskaran S, Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: In vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 2007;3(2):333-41
  • Eck W, Craig G, Sigdel A, PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2008;2(11):2263-72
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49(18):N309-15
  • Volpert OV. Modulation of endothelial cell survival by an inhibitor of angiogenesis thrombospondin-1: a dynamic balance. Cancer Metastasis Rev 2000;19(1):87-92
  • Hanahan D, Folkman, JP. Atterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353-64
  • Mukherjee P, Bhattacharya R, Wang P, Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 2005;11(9):3530-4
  • Ferrara N. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 1995;36(2):127-37
  • Duyndam MCA, Hilhorst MCGW, Schluper HMM, Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol 2002;160(2):537-48
  • Schumacher JJ, Dings RPM, Cosin J, Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res 2007;67(8):3683-90
  • Hillyer J, Albrecht R. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 2001;90:1927-36
  • Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J Anat 1996;189(Pt 3):503-5
  • Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 1997;14(3):259-66
  • Zhang G, Yang Z, Lu W, Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 2009;30(10):1928-36
  • Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 1987;3(3):233-61
  • Sonavane G, Tomoda K, Sano A, In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces 2008;65(1):1-10
  • Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 2008;66(2):274-80
  • De Jong WH, Hagens WI, Krystek P, Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008;29(12):1912-19
  • Balogh L, Nigavekar SS, Nair BM, Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 2007;3(4):281-96
  • Semmler-Behnke M, Kreyling WG, Lipka J, Biodistribution of 1.4- and 18-nm Gold particles in rats. Small 2008;4(12):2108-11
  • S Sanchez-ferrer A, Bru R, Garcia-carmona F. Phase separation of biomolecules in polyoxyethylene glycol nonionic detergents. Crit Rev Biochem Mol Bio 1994;29(4):275-313
  • Harris J. Poly(ethlyene glycol): chemistry and biological applications. Am Chem Soc 1997
  • Kingshott P, Griesser HJ. Surfaces that resist bioadhesion. Curr Opin Solid State Mater Sci 1999;4:403-12
  • Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 2003;14(3):337-46
  • Goodman C, McCusker C, Yilmaz T, Rotello V. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15:897-900
  • Hofmeister V, Schrama D, Becker JC Jr. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol, Immunother 2008;57(1):1-17
  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials 2007;2(8):469-78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.