247
Views
122
CrossRef citations to date
0
Altmetric
Review

Liposomal delivery of photosensitising agents

, &
Pages 477-487 | Published online: 10 May 2005

Bibliography

  • BANERJEE R: Liposomes: applications in medicine. J. Biomater. Appl. (2001) 16:3–21.
  • MEDINA OP, ZHU Y, KAIREMO K: Targeted liposomal drug delivery in cancer. Curr. Pharm. Des. (2004) 10:2981–2989.
  • DERYCKE AS, WITTE PA: Liposomes for photodynamic therapy. Adv. Drug Debt/. Rev. (2004) 56:17–30.
  • •An excellent recent review on liposomal technology and its application for PDT.
  • BROWN SB, BROWN EA, WALKER I: The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. (2004) 5:497–508.
  • •An overview of current status of PDT.
  • HASAN T, ORTEL B, MOOR AC, POGUE BW: Photodynamic therapy of cancer. In: Cancer Medicine. (6th Edition). DW KRE P RR W RCJ B TS G JF Holland, El Frei (Eds), BC Dekker, Inc., New York, NY, USA (2003):605–622.
  • •A comprehensive reference of PDT for cancer treatment.
  • DOUGHERTY TJ, GOMER CJ, HENDERSON BW et al.: Photodynamic therapy. J. NatL Cancer Inst. (1998) 90:889–905.
  • •A widely cited reference on PDT for cancer.
  • KONAN YN, GURNY R, ALLEMANN E: State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. PhotobioL B. (2002) 66:89–106.
  • •A detailed review of various delivery systems for photosensitisers.
  • RENNO RZ, MILLER JN(1: Photosensitizer delivery for photodynamic therapy of choroidal neovascularization. Adv. Drug Deliv. Rev. (2001) 52:63–78.
  • SHARMAN WM, ALLEN CM, VAN LIER JE: Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today (1999) 4:507–517.
  • ROSENKRANZ AA, JANS DA, SOBOLEV AS: Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. ImmunoL Cell Biol. (2000) 78:452–464.
  • RAAB O: Uber die Wirkung fluoreszierender Stoffe auf Infitsorien. Z. Biol. (1900) 39:524–546.
  • VON TAPPEINER H, JESIONEK A: Therapeutische versuche mit fluoreszier enden stoffe. Muench. Med. Wochschr. (1903) 1: 2042–2044.
  • POLICAD A: Etudes sur les aspects affects par des tumeurs experimentales examinee a la luniere des Woods. Compt. Rend. Soc. Biol. (1924) 91.
  • SCHWARTZ SK, ABSOLON K, VERMUND H: Some relationships of porphyrins, X-rays and tumours. Univ. Minn. Med. Bull. (1955) 27: 7–8.
  • LIPSON RL, BALDES EJ, OLSEN AM: Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. Thorac. Cardiovasc. Surg. (1961) 42:623–629.
  • DIAMOND I, GRANELLI SG, MCDONAGH AF, NIELSEN S, WILSON BC, JAENICKE R: Photodynamic therapy of malignant tumors. Lancet (1973) 2: 1175–1177.
  • DOUGHERTY TJ, GRINDAY GB, FIEL R, WEISHAUPT KR, BOYLE DG: therapy II: cure of animal tumors with haematoporphyrin and light. NatL Cancer Inst. (1975) 55:115–121.
  • KELLY JF, SNELL ME, BERENBAUM MC: Photodynamic destruction of human bladder carcinoma. Br. J. Cancer (1975) 31:237–244.
  • DOUGHERTY TJ, KAUFMAN J, GOLDFARB A, WEISHAUPT K, BOYLE D, MITTELMAN A: Photoradiation therapy for the treatment of malignant tumors. Cancer Res. (1978) 38:2628–2635.
  • ACKROYD R, KELTY C, BROWN N, REED M: The history of photodetection and photodynamic therapy. Photochem. PhotobioL (2001) 74:656–669.
  • •An interesting story of photosensitisers in medical applications from ancient to the present.
  • DETTY MR, GIBSON SL, WAGNER SJ: Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. (2004) 47:3897–3915.
  • •A summary of all current photosensitisers.
  • OENBRINK G, JURGENLIMKE P, GABEL D: Accumulation of porphyrins in cells: influence of hydrophobicity aggregation and protein binding. Photochem. PhotobioL (1988) 48:451–456.
  • ALLEMANN E, BRASSEUR N, KUDREVICH SV, MADELEINE C, VAN LIER JE: Photodynamic activities and biodistribution of fluorinated zinc phthalocyanine derivatives in the murine EMT-6 tumour model. Int. J. Cancer (1997) 72:289–294.
  • BIOLO R, JORI G, SONCIN M, RIHTER B, KENNEY ME, RODGERS MA: Effect of photosensitizer delivery system and irradiation parameters on the efficiency of photodynamic therapy of B16 pigmented melanoma in mice. Photochem. Photobiol (1996) 63:224–228.
  • FEOFANOV A, GRICHINE A, KARMAKOVA T et al.: Near-infrared photosensitizer based on a cycloimide derivative of chlorin p6: 13,15-N-(3'-hydroxypropyficycloimide chlorin p6. Photochem. Photobiol. (2002) 75:633–643.
  • WOHRLE D, MULLER S, SHOPOVA M et al.: Effect of delivery system on the pharmacokinetic and phototherapeutic properties of bis(methyloxyethyleneoxy) silicon-phthalocyanine in tumor-bearing mice. J. Photochem. Photobiol B. (1999) 50:124–128.
  • VAN NOSTRUM CF: Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev. (2004) 56:9–16.
  • ALLEMANN E, ROUSSEAU J, BRASSEUR N, KUDREVICH SV, LEWIS K, VAN LIER JE: Photodynamic therapy of tumours with hexadecafluoro zinc phthalocynine formulated in PEG-coated poly(lactic acid) nanoparticles. Int. J. Cancer (1996) 66:821–824.
  • ALLEMANN E, BRASSEUR N, BENREZZAK O et al.: PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J. Pharm. Pharmacol (1995) 47:382–387.
  • KONAN YN, CERNY R, FAVET J, BERTON M, GURNY R, ALLEMANN E: Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyfiporphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm. (2003) 55:115–124.
  • STEVENS PJ, SEKIDO M, LEE RJ: Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation. Anticancer Res. (2004) 24:161–165.
  • HORNUNG R, FEHR MK, WALT H, WYSS P, BERNS MW, TADIR Y: PEG-m-THPC-mediated photodynamic effects on normal rat tissues. Photochem. Photobiol. (2000) 72:696–700.
  • BRASSEUR N, OUELLET R, MADELEINE C, VAN LIER JE: Water-soluble aluminium phthalocyanine-polymer for PDT: photodynamic activities and pharmacokinetics in tumour-bearing mice. Br. J. Cancer (1999) 80:1533–1541.
  • HAMBLIN MR, MILLER JL, RIZVI I, ORTEL B, MAYTIN EV, HASAN T: Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res. (2001) 61:7155–7162.
  • HAMBLIN MR, MILLER JL, RIZVI I, LOEW HG, HASAN T: Pegylation of charged polymer-photosensitiser conjugates: effects on photodynamic efficacy. Br. J. Cancer (2003) 89:937–943.
  • SOUKOS NS, HAMBLIN MR, HASAN T: The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem. Photobiol (1997) 65:723–729.
  • HAMBLIN MR, RAJADHYAKSHA M, MOMMA T, SOUKOS NS, HASAN T: In vivo fluorescence imaging of the transport of charged chlorin e6 conjugates in a rat orthotopic prostate tumour. Br. J. Cancer (1999) 81:261–268.
  • REDDI E: Role of delivery vehicles for photosensitizers in the photodynamic therapy of tumours. J. Photochem. Photobiol. B. (1997) 37:189–195.
  • VAN DONGEN GA, VISSER GW, VROUENRAETS MB: Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv. Drug Deliv. Rev. (2004) 56:31–52.
  • GIJSENS A, WITTE P: [Targeting of chlorine E6 by EGF increasing its photodynamic activity in selective ways]. Verh. K Acad. Geneeskd Belg (2000) 62:329–352.
  • GIJSENS A, WITTE P: Photocytotoxicaction of EGF-PVA-Sn(IV)chlorin e6 and EGF-dextran-Sn(IV)chlorin e6 internalizable conjugates on A431 cells. Int. J. Oncol. (1998) 13:1171–1177.
  • DERYCKE AS, WITTE PA: Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int. J. Oncol (2002) 20:181–187.
  • GIJSENS A, DERYCKE A, MISSIAEN L et al.: Targeting of the photocytotoxic compound A1PcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int. J. Cancer (2002) 101:78–85.
  • DERYCKE AS, KAMUHABWA A. GIJSENS A et al.: Transferrin-conjugated liposome targeting of photosensitizer A1PcS4 to rat bladder carcinoma cells. Natl Cancer Inst. (2004) 96:1620–1630.
  • •A well-performed study showing the promise of a liposomal formulation both in vitro and in vivo.
  • ZHANG M, ZHANG Z, BLESSINGTON D et al.: Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters. Bioconjug. Chem. (2003) 14:709–714.
  • QUALLS MM, THOMPSON DH: Chloroaluminum phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposomes: intracellular localization and synergistic phototoxicity. Int. J. Cancer (2001) 93:384–392.
  • DRUMMOND DC, MEYER O, HONG K, KIRPOTIN DB, PAPAHADJOPOULOS D: Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. (1999) 51:691–743.
  • •An excellent review on various aspects of liposomal formulation.
  • JAIN RK: Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release (2001) 74:7–25.
  • MAEDA H: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul (2001) 41:189–207.
  • SPIKES JD: A preliminary comparison of the photosensitizing properties of porphyrins in aqueous solution and liposomal systems. Adv. Exp. Med. Biol. (1983) 160:181–192.
  • COZZANI I, JORI G, BERTOLONI G et al.: Efficient photosensitization of malignant human cells in vitro by liposome-bound porphyrins. Chem. Biol. Interact. (1985) 53:131–143.
  • DAVIS RK, STRAIGHT R, KERESZTI Z: Comparison of photosensitizers in saline and liposomes for tumor photodynamic therapy and skin phototoxicity. Laryngoscope (1990) 100:682–686.
  • JORI G: Factors controlling the selectivity and efficiency of tumor damage in photodynamic therapy. Lasers Med. Sci. (1990) 5:115.
  • JIANG F, LILGE L, LOGIE B, LI Y, CHOPP M: Photodynamic therapy of 9L gliosarcoma with liposome-delivered photofrin. Photochem. PhotobioL (1997) 65:701–706.
  • JIANG F, LILGE L, GRENIER J, LI Y, WILSON MD, CHOPP M: Photodynamic therapy of U87 human glioma in nude rat using liposome-delivered photofrin. Lasers Surg Med. (1998) 22:74–80.
  • IGARASHI A, KONNO H, TANAKA T et al.: Liposomal photofrin enhances therapeutic efficacy of photodynamic therapy against the human gastric cancer. ToxicoL Lett. (2003) 145:133–141.
  • BACHOR R, REICH E, MILLER K, RUCK A, HAUTMANN R: Photodynamic efficiency of liposome-administered tetramethyl hematoporphyrin in two human bladder cancer cell lines. Urol. Res. (1995) 23:151–156.
  • LOVCINSKY M, BORECKY J, KUBAT P, JEZEK P: Meso-tetraphenylporphyrin in liposomes as a suitable photosenzitizer for photodynamic therapy of tumors. Gen. Physiol. Biophys. (1999) 18: 10 7–1 1 8.
  • JEZEK P, NEKVASIL M, SKOBISOVA E et al.: Experimental photodynamic therapy with MESO-tetrakisphenylporphyrin (TPP) in liposomes leads to disintegration of human amelanotic melanoma implanted to nude mice. Int. J. Cancer (2003) 103:693–702.
  • FAUSTINO MA, NEVES MG, CAVALEIRO JA, NEUMANN M, BRAUER HD, JORI G: Meso-tetraphenylporphyrin dimer derivatives as potential photosensitizers in photodynamic therapy. Part 2. Photochem. PhotobioL (2000) 72:217–225.
  • FAUSTINO MA, NEVES MG, VICENTE MG et aL: Meso-tetraphenylporphyrin dimer derivative as a potential photosensitizer in photodynamic therapy. Photochem. PhotobioL (1997) 66:405–412.
  • POSTIGO F, MORA M, MADARIAGA MA, NONELL S, SAGRISTA ML: Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements. Int. J. Pharm. (2004) 278:239–254.
  • FUKUDA H, PAREDES S, BATLLE AM: Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms. Drug Des. Deliv. (1989) 5:133–139.
  • FUKUDA H, PAREDES S, BATLLE AM: Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid. Comp. Biochem. PhysioL B (1992) 102:433–436.
  • CASAS A. PEROTTI C, SACCOLITI M, SACCA P, FUKUDA H, BATLLE AM: ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures. Br. J. Cancer (2002) 86:837–842.
  • CASAS A. FUKUDA H, VENOSA G, BATLLE AM: The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinic acid. Implications in cutaneous photodynamic sensitization. Br. J. DermatoL (2000) 143:564–572.
  • PIERRE MB, TEDESCO AC, MARCHETTI JM, BENTLEY MV: Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC DermatoL (2001) 1:5.
  • RODAL GH, RODAL SK, MOAN J, BERG K: Liposome-bound Zn 00-phthalocyanine. Mechanisms for cellular uptake and photosensitization. Photochem. PhotobioL B. (1998) 45:150–159.
  • REDDI E, CASTRO G, BIOLO R, JORI G: Pharmacokinetic studies with zinc()-phthalocyanine in tumour-bearing mice. Br. J. Cancer (1987) 56: 597–600.
  • POLO L, SEGALLA A, JORI G et al.: Liposome-delivered 131I-labelled ZOO-phthalocyanine as a radiodiagnostic agent for tumours. Cancer Lett. (1996) 109:57–61.
  • REDDI E, ZHOU C, BIOLO R, MENEGALDO E, JORI G: Liposome- or LDL-administered Zn 00-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency. Br. J. Cancer (1990) 61:407–411.
  • SHOPOVA M, MANTAREVA V, KRASTEV K et al.: Comparative pharmacokinetic and photodynamic studies with zinc(ft) phthalocyanine in hamsters bearing an induced or transplanted rhabdomyosarcoma. j Photochem. PhotobioL B. (1992) 16:83–89.
  • VAN LEENGOED HL, CUOMO V, VERSTEEG AA, VAN VEEN N, JORI G, STAR WM: In vivo fluorescence and photodynamic activity of zinc phthalocyanine administered in liposomes. Br. J. Cancer (1994) 69:840–845.
  • LOVE WG, DUK S, BIOLO R, JORI G, TAYLOR PW: Liposome-mediated delivery of photosensitizers: localization of zinc 00-phthalocyanine within implanted tumors after intravenous administration. Photochem. PhotobioL (1996) 63:656–661.
  • CHUNG NS, WASAN KM: Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv. Drug Deli v. Rev. (2004) 56:1315–1334.
  • ISELE U, SCHIEWECK K, KESSLER R, VAN HOOGEVEST P, CAPRARO HG: Pharmacokinetics and body distribution of liposomal zinc phthalocyanine in tumor-bearing mice: influence of aggregation state, particle size, and composition. J. Pharm. Sci. (1995) 84:166–173.
  • SEGALLA A, MILANESI C, JORI G, CAPRARO HG, ISELE U, SCHIEWECK K: CGP 55398, a liposomal Ge(Iv) phthalocyanine bearing two axially ligated cholesterol moieties: a new potential agent for photodynamic therapy of tumours. Br. J. Cancer (1994) 69:817–825.
  • SHOPOVA M, WOHRLE D, STOICHKOVA N et al.: Hydrophobic Zn00-naphthalocyanines as photodynamic therapy agents for Lewis lung carcinoma. Photochem. Photobiol. B. (1994) 23:35–42.
  • BIOLO R, JORI G, SONCIN M et aL: Photodynamic therapy of B16 pigmented melanoma with liposome-delivered Si(Iv)-naphthalocyanine. Photochem. PhotobioL (1994) 59:362–365.
  • CUOMO V, JORI G, RIHTER B, KENNEY ME, RODGERS MA: Liposome-delivered Si(Iv)-naphthalocyanine as a photodynamic sensitiser for experimental tumours: pharmacokinetic and phototherapeutic studies. Br. J. Cancer (1990) 62:966–970.
  • KORBELIK M: Low density lipoprotein receptor pathway in the delivery of Photofrin: how much is it relevant for selective accumulation of the photosensitizer in tumors? J. Photochem. PhotobioL B. (1992) 12: 10 7–10 9.
  • MORGAN J, GRAY AG, HUEHNS ER: Specific targeting and toxicity of sulphonated aluminium phthalocyanine photosensitised liposomes directed to cells by monoclonal antibody in vitro. Br. J. Cancer (1989) 59:366–370.
  • MORGAN J, LOTTMAN H, ABBOU CC, CHOPIN DK: A comparison of direct and liposomal antibody conjugates of sulfonated aluminum phthalocyanines for selective photoimmunotherapy of human bladder carcinoma. Photochem. Photobiol (1994) 60:486–496.
  • RICHTER AM, WATERFIELD E, JAIN AK, CANAAN AJ, ALLISON BA, LEVY JG: Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem. PhotobioL (1993) 57:1000–1006.
  • SCHMIDT-ERFURTH U, HASAN T, SCHOMACKER K, FLOTTE T, BIRNGRUBER R: In vivo uptake of liposomal benzoporphyrin derivative and photothrombosis in experimental corneal neovascularization. Lasers Surg Med. (1995) 17:178–188.
  • WOODBURN KW, ENGELMAN CJ, BLUMENKRANZ MS: Photodynamic therapy for choroidal neovascularization: a review. Retina (2002) 22:391-405; quiz 527–528.
  • OKU N, SAITO N, NAMBA Y, TSUKADA H, DOLPHIN D, OKADA S: Application of long-circulating liposomes to cancer photodynamic therapy. Biol. Pharm. Bull. (1997) 20:670–673.
  • ICHIKAWA K, HIKITA T, MAEDA N, TAKEUCHI Y, NAMBA Y, OKU N: PEGylation of liposome decreases the susceptibility of liposomal drug in cancer photodynamic therapy. Biol. Pharm. Bull. (2004) 27:443–444.
  • TAKEUCHI Y, ICHIKAWA K, YONEZAWA S et al.: Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J. Control. Release (2004) 97:231–240.
  • TAKEUCHI Y, KUROHANE K, ICHIKAWA K, YONEZAWA S, NANGO M, OKU N: Induction of intensive tumor suppression by antiangiogenic photodynamic therapy using polycation-modified liposomal photosensitizer. Cancer (2003) 97:2027–2034.
  • TAKEUCHI Y, KUROHANE K, ICHIKAWA K et al.: Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum. Bioconjug Chem. (2003) 14:790–796.
  • MAYHEW E, VAUGHAN L, PANUS A, MURRAY M, HENDERSON BW: Lipid-associated methylpheophorbide-a (hexyl-ether) as a photodynamic agent in tumor-bearing mice. Photochem. Photobiol (1993) 58:845–851.
  • BERGSTROM LC, VUCENIK I, HAGEN IK, CHERNOMORSKY SA, PORETZ RD: In-vitro photocytotoxicity of lysosomotropic immunoliposomes containing pheophorbide a with human bladder carcinoma cells. J. Photochem. Photobiol B. (1994) 24:17–23.
  • NAMIKI Y, NAMIKI T, DATE M, YANAGIHARA K, YASHIRO M, TAKAHASHI H: Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome. Pharmacol Res. (2004) 50:65–76.
  • BOURRE L, THIBAUT S, FIMIANI M, FERRAND Y, SIMONNEAUX G, PATRICE T: In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: interest of a DMPC liposome formulation. Pharmacol Res. (2003) 47:253–261.
  • DAMOISEAU X, TFIBEL F,HOEBEKE M, FONTAINE-AUPART MP: Effect of aggregation on bacteriochlorin a triplet-state formation: a laser flash photolysis study. Photochem. Photobiol (2002) 76:480–485.
  • DAMOISEAU X, SCHUITMAKER HJ, LAGERBERG JW, HOEBEKE M: Increase of the photosensitizing efficiency of the Bacteriochlorin a by liposome-incorporation. J. Photochem. PhotobioL B. (2001) 60:50–60.
  • CANETE M, ORTIZ A, JUARRANZ A et al.: Photosensitizing properties of palladium-tetraphenylporphycene on cultured tumour cells. Anticancer Drug Des. (2000) 15:143–150.
  • CANETE M, ORTEGA C, GAVALDA A et al.: Necrotic cell death induced by photodynamic treatment of human lung adenocarcinoma A-549 cells with palladium(u)-tetraphenylporphycene. Int. J. Oncol (2004) 24:1221–1228.
  • TOLEDANO H, EDREI R, KIMEL S: Photodynamic damage by liposome-bound porphycenes: comparison between in vitro and in vivo models. J. Photochem. Photobiol B. (1998) 42:20–27.
  • AICHER A, MILLER K, REICH E, HAUTMANN R: Photodynamic therapy of human bladder carcinoma cells in vitro with pH-sensitive liposomes as carriers for 9-acetoxy-tetra-n-propylporphycene. Urol Res. (1994) 22:25–32.
  • YU C, CHEN S, ZHANG M, SHEN T: Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes. Photochem. Photobiol (2001) 73:482–488.
  • WANG ZJ, HE YY, HUANG CG et al.: Pharmacokinetics, tissue distribution and photodynamic therapy efficacy of liposomal-delivered hypocrellin A, a potential photosensitizer for tumor therapy. Photochem. Photobiol (1999) 70:773–780.
  • BISBY RH, MEAD C, MORGAN CG: Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochem. PhotobioL (2000) 72:57–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.