676
Views
167
CrossRef citations to date
0
Altmetric
Reviews

Metallic nanoparticles: technology overview & drug delivery applications in oncology

, MPharm PhD, , MPharm PhD, , , MPharm, , PhD, & show all
Pages 927-942 | Published online: 20 Jul 2010

Bibliography

  • Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005;4(4):363-34
  • Si-Shen F, Chien S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 2003;58:4087-14
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59
  • Russell JG, Norman DH. Pathology and therapeutics for Pharmacist. Neoplastic disease. 3rd edition. Pharmaceutical Press, London; 2008. p. 645-704
  • Underwood JCE. General and systemic pathology. Carcinogenesis and neoplasia. 4th edition. Churchill Livingstone Elsevier, New York; 2007. p. 223-56
  • Vinay K, Thomas PS. Robins basic pathology. In: Kumar V, Abbas AK, Fauston N, editors, Neoplasia. 8th edition. Saunders Elsevier, Philadelphia; 2007. p. 173-224
  • Stefan S, Florian L. Colour atlas of pathophysiology. Thieme, New York; 2000. p. 14
  • Yann P, Alf L. Nanoscale canger therapeutics. In: Alf L, editor, Nanotherapeutics drug delivery concepts in nannoscience. Pan Stanford Publishing, Singapore; 2009. p. 93-124
  • Jain RK. Delivery of molecular medicine to solid tumours: lessons from in vivo imaging of gene expression and function. J Control Release 2001;74:7-25
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51
  • Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulator in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(14):265-83
  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004;61:2549-59
  • Woodle MC. Controlling liposome blood clearance by surface grafted polymers. Adv Drug Deliv Rev 1998;32:139-52
  • Papisov MI. Theoretical considerations of RES-avoiding liposomes: molecular mechanisms and chemistry of liposome interactions. Adv Drug Deliv Rev 1998;32:119-38
  • Moghimi SM, Patel HM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Deliv Rev 1998;32:45-60
  • Kreuter J, Tauber U, Illi V. Distribution and elimination of poly(methyl-2-14C-methacrylate) nanoparticle radioactivity after injection in rats and mice. J Pharm Sci 1979;68:1443-47
  • Alisar SZ, Michael VP. Nanotechnology for cancer chemotherapy. In: de Villiers MM, Aramwit P, Kwon GS, editors, Nanotechnology in drug delivery. Springer, AAPS Press, New York; 2009. p. 491-518
  • Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nature 2002;2:750-63
  • Kim CK, Lim SJ. Recent progress in drug delivery systems for anticancer agents. Arch Pharm Res 2002;25:229-39
  • Kingsley JD, Dou H, Morehead J, Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuro Pharmacol 2006;1:340-50
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanotechnol 2004;2:3-8
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-18
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161-71
  • Brigger I, Morizet J, Aubert G, Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumour targeting. J Pharmacol Exp Ther 2002;303(3):928-36
  • Alexandra K, Mike HP, Daniela H, Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 2009;72:370-77
  • Sanjeeb KS, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003;8(24):1112-20
  • James DB, Tania B, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008;60:1615-26
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008;26(1):57-64
  • Muller RH, Mader K, Gohla S. Solid–lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 2000;50:161-77
  • Jain R, Shah NH, Malick AW, Rhodes CT. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Indust Pharm 1998;24:703-27
  • Rafferty DE, Elfaki MG, Montgomery PC. Preparation and characterization of a biodegradable microparticle antigen/cytokine delivery system. Vaccine 1996;14:532-38
  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005;10(21):1451-58
  • Sutton D, Nasongkla N, Blanco E, Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007;24(6):1029-46
  • Lowery AR, Gobin AM, Day ES, Immuno nanoshells for targeted photothermal ablation of tumour cells. Int J Nanomed 2006;1(2):149-54
  • Kam NW, O'Connell M, Wisdom JA, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 2005;102(33):11600-5
  • Deryugina EI, Bourdon MA, Jungwirth K, Strongin, functional activation of integrin alpha V beta 3 in tumour cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer 2000;86(1):15-23
  • Reddy GR, Bhojani MS, McConville P, Vascular targeted nanoparticles for imaging and treatment of brain tumours. Clin Cancer Res 2006;12:6677-86
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticle for biomedical application. Biomaterials 2005;26(18):3995-21
  • An-Hui L, Salabas EL, Ferdi S. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007;46:1222-44
  • Lubbe AS, Bergemann C. In: Hafeli U, Schutt W, Teller J, Zborowski M, editors, Scientific & clinical applications of magnetic carriers. Plenum, New York, London; 1997. p. 437
  • Widder KJ, Senyei AE. Magnetic microspheres: a vehicle for selective targeting of drugs. Pharmacol Ther 1983;20:377-95
  • Torchilin VP. Drug targeting. Eur J Pharm Sci 2000;11(2):S81-91
  • Tata DB, Vanhouten NF, Brook C, Tritton TR. Noninvasive permanent magnetic field modality induces lethal effects on several rodent and human cancers. An in-vitro study. Proc Annu Meeting Cancer Res 1994;35:A2300
  • Vays SP, Khar RK. Targeted & controlled drug delivery. CBC Publisher & distributors, New Delhi; 2004. p. 476
  • Giulio FP, Lawrence T. Biological and engineering consideration for developing tumour targeting metallic nanoparticle drug delivery system. In: Thassu D, Michel D, Pathak Y, editors, Nanoparticulate drug delivery systems. Informa Healthcare, New York; 2007. p. 141-58
  • Maruyama K, Ishida O, Takizawa T, Moribe K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 1999;40:89-102
  • Nafayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor, which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 1999;40:75-87
  • Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006;67:55-60
  • Pankhurst QA, Connolly J, Jones SK, J Phys D App Phys 2003;36:R167-181
  • Sanvicens N, Pilar MM. Multifunctional nanoparticles properties–and prospect for their use in human medicine. Trends Biotech 2008;26(8):425-33
  • Oscar G, Victor P. What nanotechnology do to fight cancer? Clin Transl Oncol 2006;8(11)788-95
  • Orringer DA, Koo YE, Chen T, Small solutions for big problems: the application of nanoparticles to brain tumour diagnosis and therapy. Clin Pharmacol Ther 2009;85:531-34
  • Yvonne P, Thomas R. Site-directed drug targeting. Fast track: pharmaceutics-drug delivery and targeting. Pharmaceutical Press, London; 2010. p. 141-60
  • Moghimi SM, Patel HM. Altered tissue specific opsonic activities and opsonophagocytosis of liposomes in tumor bearing rats. Biochem Biophys Acta 1996;1179:157-65
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospect. FASEB J 2005;19:311-30
  • Absolom D. Opsonins and dysopsonins: an overview. Methods Enzymol 1986;132:281-18
  • Petrak K. Essential properties of drug-targeting delivery system. Drug Discov Today 2005;23-24:1667-73
  • Chonn A, Cullis PR, Devine DV. The role of surface charge in the activation of the classic and alternative pathways of complement activation by liposomes. J Immunol 1991;146:4234-41
  • Moghimi SM. Recent development in polymeric nanoparticle engineering and their application in experimental and clinical oncology. Anti Cancer Agent Med Chem 2006;6:553-61
  • Moghgimi SM. Passive targeting of solid tumour: pathophysiological principle and physiological aspect of delivery system. In: Amiji MM, editor, Nanotechnology for cancer therapy. CRC Press, Taylor & Francis Group, Boca Raton; 2007. p. 11-8
  • Bhatia SK, King MR, Hammer DA. The state diagram for cell adhesion mediated by two receptors. Biophys J 2003;84:2671-90
  • Andresen TL, Jensen SS, Jorgensen K. Advance strategies in liposomal cancer therapy: problems and prospect of active tumour specific drug release. Prog Lipid Res 2005;44:68-97
  • Harush FO, Debotton N, Bentita S, Targetting of nanoparticle to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 2007;353:26-32
  • Moghimi SM, Islam H. Factors controlling pharmacokinetics of intravenously injected nanoparticulate system. In: de Villiers MM, Aramwit P, Kwon GS, editors, Nanotechnology in drug delivery. Springer, AAPS Press, New York; 2009. p. 267-82
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51
  • Serra MV, Mannu F, Mater A, Enhanced IgG and complement-independent phagocytosis of sulfatide-enriched human erythrocytes by human monocytes. FEBS Lett 1992;311:67-70
  • Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo relation to circulation lifetimes. J Biol Chem 1992;267:18759-65
  • Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonised phospholipids vesicles and phospholipids head groups. Pharm Res 2001;18:1-8
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and proteinbinding properties. Prog Lipid Res 2003;42:463-78
  • Abul KA. Disease of immunity. Robbins and cotran pathologic basis of disease. Elsevier Saunders, Philadelphia; 2007. p. 107-72
  • Moghimi SM, Patel HM. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 1988;233:143-47
  • Ulrich F, Zilversmit DB. Release from alveolar macrophages of an inhibitor of phagocytosis. Am J Physiol 1970;218:1118-27
  • Fredika MR, Mauro F. Introduction and rationale for nanotechnology in cancer therapy. In: Amiji MM, editor, Nanotechnology for cancer therapy. CRC Press, Boca Raton; 2007. p. 3-10
  • Mohammed JM, Pankaj P, Ya-Ping S. Supercritical fluid technology for nanotechnology in drug delivery. In: de Villiers MM, Aramwit P, Kwon GS, editors, Nanotechnology in drug delivery. Springer, AAPS Press, New York; 2009. p. 69-104
  • Schiffelers RM, Ansari A, Xu J, Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticles. Nucl Acids Res 2004;32(19):e149
  • Abra RM, Bosworth ME, Hunt CA. Liposome disposition in vivo: effect of pre-dosing with liposomes. Res Commun Chem Pathol Pharmacol 1980;29:349-60
  • Woodle MC, Scaria P, Ganesh S, Sterically stabilized polyplex: ligand-mediated activity. J Control Release 2001;74(1-3):309-11
  • Moghimi SM, Davis SS. Innovations in avoiding particle clearance from the blood by Kupffer cells: cause for reflection. Crit Rev Ther Drug Carrier Syst 1994;11:31-59
  • Yuan F, Leunig M, Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumour xenograft. Cancer Res 1994;54(13):3352-56
  • Dagar SA, Krishnadas A, Rubinstein I, VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 2003;91:123-33
  • Maeda H, Sawa T, Konno T. Mechanism of tumour-targeted delivery of macromolecular drugs, including the EPR effect in solid tumour and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001;74:47-61
  • Matsumura Y, Maeda HA. New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumour itropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 1986;46:6387-92
  • Upasna G, Sanjeeb KS, Tapas KD, Biodistribution of fluoresceinated dextran using novel nanoparticle evading reticuloendothelial system. Int J pharm 2000;202(1-2):1-10
  • Moghimi SM, Porter CJH, Muir IS, Non-phagocytic uptake of intravenously injected microspheres in the rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 1991;177:861-66
  • Campbell RB, Fukumura D, Brown EB, Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumours. Cancer Res 2002;62(23):6831-36
  • Gabizon A, Horowitz AT, Goren D, In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 2003;9(17):6551-59
  • Campbell RB, Balasubramanian SV, Straubinger RM. Influence of cationic lipids on the stability and membrane properties of paclitaxel-containing liposomes. J Pharm Sci 2001;90(8):1091-5
  • Pan X, Lee RJ. Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin Drug Deliv 2004;1(1):7-17
  • Gabizon A, Shmeeda H, Horowitz AT, Tumour cell targeting of liposome entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 2004:56(8):1177-92
  • Mornet S, Vasseur S, Grasset F, Magnetic nanoparticle design for medical applications. Prog Solid State Chem 2006;34:237-47
  • Jones A, Harris AL. New developments in angiogenesis: a major mechanism for tumor growth and target for therapy. Cancer J Sci Am 1998;4(4):209-17
  • Baban DF, Seymour LW. Control of tumour vascular permeability. Adv Drug Deliv Rev 1998;34(1):109-19
  • Folkman J, Merler E, Abernathy C, Isolation of a tumour factor responsible for angiogenesis. J Exp Med 1971;133(2):275-88
  • Rubin P, Casarett G. Microcirculation of tumors. II. The supervascularized state of irradiated regressing tumours. Clin Radiol 1966;17(4):346-55
  • Hobbs SK, Monsky WL, Yuan F, Regulation of transport pathways in tumor vessels: role of tumour type and microenvironment. Proc Natl Acad Sci USA 1998;95(8):4607-12
  • Shubik P. Vascularization of tumors: a review. J Cancer Res Clin Oncol 1982;103(3):211-26
  • Maeda H, Wu J, Sawa T, Tumour vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-84
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumour-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-7
  • Munn LL. Aberrant vascular architecture in tumours and its importance in drug-based therapies. Drug Discov Today 2003;8:396-3
  • Jain RK. Delivery of molecular medicine to solid tumours: lessons from in vivo imaging of gene expression and function. J Control Release 2001;6:7-25
  • Omid V, Jonanthan WG, Miqin Z. Dessign and fabrication of magnetic nanoparticle for targeted drug delivery and imaging. Adv Drug Deliv Rev 2010;62:284-4
  • Davis ME. Non-viral gene delivery systems. Curr Opin Biotechnol 2002;13:128-31
  • Herbst RS. Imaging in drug development. Clin Adv Hematol Oncol 2004;2(5):268-9
  • Conor CL, Atsuya H, Heath B, MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 2005;7(5):485-96
  • Weissleder R, Bogdanov A, Papisov M. Drug targeting in magnetic resonance imaging. Mag Res Quar 1992;8:55-63
  • Sinha R, Kim GJ, Nie SM, Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5:1909-17
  • Zhang Y, Kohler N, Zhang MQ. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002;23:1553-61
  • Neri D, Bicknell R. Tumor vascular targeting. Nat Rev 2005;5:436-47
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010;62(2):90-2
  • Kingsley JD, Dou H, Morehead J, Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmunol Pharmacol 2006;1:340-50
  • Yigit MV, Mazumdar D, HK, Smart ‘turn-on’ magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chem BioChem 2007;8:1675-78
  • Herr JK, Smith JE, Medley CD, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 2006;78:2918-24
  • Kresse M, Wagner S, Pfefferer D, Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 1998;40:236-42
  • Hatakeyama H, Akita H, Ishida E, Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 2007;342(1-2):194-200
  • Wunderbaldinger P, Josephson L, Weissleder R. Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 2002;13:264-68
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004;96:273-83
  • Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Differential tumor cell targeting of anti-HER2 (Herceptin (R)) and anti-CD20 (Mabthera (R)) coupled nanoparticles. Int J Pharm 2007;331:190-96
  • Funovics MA, Kapeller B, Hoeller C, MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843-50
  • Toma A, Otsuji E, Kuriu Y, Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer 2005;93:131-36
  • Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005;4(4):363-74
  • Quintana A, Raczka E, Piehler L, Design and function of a dendrimer-based therapeutic nanodeviced targeted to tumor cells through the folate receptor. Pharm Res 2002;19(9):1310-16
  • Kim GY, Josephson L, Langer R, Magnetic relaxation switches detection of human chorionic gonadotrophin. Bioconjug Chem 2007;18:2024-28
  • Carter P, Smith L, Ryan M. Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer 2004;11(4):659-87
  • Tiefenauer LX, Kuhne G, Andres RY. Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug Chem 1993;4:347-52
  • Bulte JW, Hoekstra Y, Kamman RL, Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 1992;25:148-57
  • Kirpotin D, Park JW, Hong K, Sterically stabilized Anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 1977;36:66-75
  • Huh YM, Jun YW, Song HT, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 2005;127:12387-91
  • Randall JM. Active targeting strategies in cancer with a focus on potential nanotechnology applications. In: Amiji MM, editor, Nanotechnology for cancer therapy. CRS Press, Boca Raton; 2006. p. 19-42
  • Vandervoort J, Ludwig A. Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int J Pharm 2002;238(1-2):77-92
  • Ayanthi UG, Pankhurst QA, Douek M. Imaging applications of nanotechnology in cancer. Targ Oncol 2009;4:169-81
  • Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biologicalsystems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998;37:2755-94
  • Munson PJ, Rodbard D. Computer modeling of several ligands binding to multiple receptors. Endocrinology 1979;105:1377-81
  • Wright D, Usher L. Multivalent binding in the design of bioactive compounds. Curr Organ Chem 2001;5:1107-31
  • Jiang W, Kim BYS, Rutka JT, Nanoparticle-mediated cellular response is size-dependent. Nat Nanotech 2008;3:145-50
  • Jason RM, Ralph W. Multifunctional magnetic nanoparticle for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60:1241-51
  • Makino A, Kizaka-Kondoh S, Yamahara R. Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphilic polydepsipeptide. Biomaterials 2009;30(28):5156-60
  • Papagiannaros A, Kale A, Levchenko TS, Near infrared planar tumor imaging and quantification using nanosized Alexa 750-labeled phospholipid micelles. Int J Nanomed 2009;4:123-31
  • Byrne AT, O'Connor AE, Hall M, Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment. Br J Cancer 2009;101(9):1565-73
  • Lukianova-Hleb EY, Hanna EY, Hafner JH, Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 2010;21:085102
  • Alric C, Taleb J, Le DG, Gadolinium chelate coated gold nanoparticles as contrast agent for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 2008;130(18):5908-15
  • Lindsey JEA, Eric H, Lukianova-Hleb EY, Optically guided controlled release from liposomes with tunable plasmonic nanobubbles. J Control Release 2010;144:151-58
  • Berry CC, Curtis ASG. Functionalization of magnetic nanoparticle for application in biomedicine. J Phys Appl phys 2003;36:R198-206
  • Hu FQ, Wei L, Zhou Z, Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 2006;18:2553-56
  • Harisinghani MG, Barentsz J, Hahn PF, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491-99
  • Alexiou C, Arnold W, Klein RJ, Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000;60:6641-48
  • Alexiou C, Jurgons R, Schmid R, In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater 2005;293:389-93
  • Farrer NJ, Salassa L, Sadler PJ. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans 2009;48:10690-1
  • Lesile LC, Nitin N, Gang B. Magnetic nanoparticle probes. Nanotoday 2005:32-38
  • McNeil SE. Nanotechnology for the biologist. J Leukoc Biol 2005;78:585-94
  • Zhao M, Beauregard DA, Loizou L, Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001;7:1241-44
  • Pouliquen D, Lucet I, Chouly C, Liver- directed superparamagnetic iron oxide: quantitation of T2 relaxation effect. Mag Reso Imaging 1993;2(11):219-28
  • Stark DD, Weissleder R, Elizondo G, Neuroblastoma: diagnostic imaging and staging. Radiology 1988;168(2):297-01
  • Weissleder R. Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 1994;193(3):593-95
  • Remsen LG, McCormick CI, Roman-Goldstein SGN, MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. AJNR Am J Neuroradiol 1996;17(3):411-18
  • Artemov D, Noriko M, Baasil O, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 2003;49:403-8
  • Suwa T, Ozawa S, Ueda M, Magnetic resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int J Cancer 1998;75(4):626-34
  • Kresse M, Wagner S, Pfefferer D, Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumour cells in vivo by using transferrin receptor pathways. Magn Reson Med 1998;40(2):236-42
  • Shen TT, Bogdanov AJ, Brady TJ, Magnetically labelled secretin retains receptor affinity to pancreas acinar cells. Bioconjug Chem 1996;7(3):311-6
  • Reimer P, Weissleder R, Shen TT, Pancreatic receptors: initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 1994;193(2):527-31
  • Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001;11(11):2319-31
  • Hahn PF, Stark DD, Lewis JM, First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 1990;175(3):695-700
  • Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur Radiol 1998;8(7):1198-4
  • Weissleder R, Stark DD, Engelstad BL, Supererparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989;2(1):167-73
  • Christopher JS, Matthias S, James E, Targeted nanoparticle for detecting and treating cancer. Drug Dev Res 2006;67(1):70-93
  • Harisinghani MG, Weissleder R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med 2004;1:e66
  • Enochs WS, Harsh G, Hochberg F, Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. Magn Reson Imaging 1999;9(2):228-32
  • Liong M, Lu J, Kovochich M. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008;2:889-96
  • Kohler N, Sun C, Fichtenholtz A, Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006;2(6):785-92
  • Jain TK, Richey J, Strand M, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008;29:4012-21
  • Hu SH, Tsai CH, Liao CF, Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir 2008;24:11811-18
  • Liang S, Wang YX, Yu JF, Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for biomagnetically targeted therapy. J Mater Sci Mater Med 2007;18:2297-2
  • Ross JS, Fletcher JA, Bloom KJ, Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics 2004;3(4):379-98
  • Kyeongsoon P, Lee S, Eunah K, New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 2009;19:1553-66
  • Seydel C. Quantum dots get wet. Science 2003;300(5616):80-1
  • Bruchez MJ, Moronne M, Gin P, Semiconductor nanocrystals as fluorescent biological labels. AP Science 1998;25(5385):2013-6
  • Gao X, Cui Y, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996;382:607-9
  • Chen K, Li ZB, Wang H, Dual-modality optical and positron emission tomography imaging of vascular endothelium growth factor receptor on tumour vasculature using quantum dot. Eur J Nucl Med Mol Imaging 2008;35(12):2235-44
  • Hirsch LR, Jackson JB, Lee A, A whole blood immunoassay using gold nanoshells. Anal Chem 2003;75(10):2377-81
  • Thanh NT, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem 2002;74(7):1624-8
  • Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003;301(5641):1884-6
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104(1):293-46
  • Love JC, Estroff LA, Kriebel JK, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005;105(4):1103-69
  • Elghanian R, Storhoff JJ, Mucic RC, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997;277(5329):1078-81
  • Loo C, Lin A, Hirsch L, Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004;3(1):33-40
  • James FH, Avraham FD, Zhong Z, Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 2010;55(11):3045-59
  • Kirui DK, Rey DA, Batt CA. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 2010;21(10):105105
  • Park H, Yang J, Seo S, Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small 2008;4(2):192-6
  • Hirsch LR, Stafford RJ, Bankson JA, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549-54
  • Loo C, Lowery A, Halas N, Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5(4):709-11
  • Hainfeld J, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49:N309-15
  • Huang X, El-Sayed IH, Qian W, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128(6):2115-20
  • Available from: http://www.fda.gov/nanotechnology/taskforce/ vreport2007 [Accessed on 28 December 2009]
  • Available from: http://www.fda.gov/Food/NewsEvents/ConstituentUpdates/default.htm [Accessed on 18 March 2010]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.