898
Views
110
CrossRef citations to date
0
Altmetric
Reviews

Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting

&
Pages 895-913 | Published online: 15 Jul 2010

Bibliography

  • Labhasetwar V. Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotech 2005;16(6):674-80
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003;422(6927):37-44
  • Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopath 2010;25(1):99-12
  • Surti N, Naik S, Bagchi T, Intracellular delivery of nanoparticles with biological systems. Biomaterials 2008;9(1):217-23
  • Basarkar A, Misra A. Intracellular delivery of nanoparticles of an antiasthmatic drug. AAPS PharmSciTech 2008;9(1):217-23
  • Deretic V, Singh S, Master S, Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 2006;8(5):719-27
  • Huynh KK, Grinstein S. Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 2007;71(3):452-62
  • Cho YW, Kim JD, Park K. Pollycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 2003;55(6):721-34
  • Engqvist-Goldstein AEY, Drubin DG. Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 2003;19:287-332
  • Robertson AS, Smythe E, Ayscough KR. Functions of actin in endocytosis. CMLS-Cell. Mol Life Sci 2009;66(13):2049-65
  • Tsujita K, Suetsugu S, Sasaki N, Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 2006;172(2):269-79
  • Orth JD, Mcniven MA. Dynamin at the actin-membrane interface. Curr Opin Cell Biol 2003;15(1):31-9
  • Cao H, Orth JD, Chen J, Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol Cell Biol 2003;23(6):2162-70
  • Mcniven MA, Thompson HM. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 2006;313(5793):1591-4
  • Hansen CG, Nichols BJ. Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 2009;122(11):1713-21
  • Gleich GJ, Adolphson CR. The eosinophilic leukocyte – structure and function. Adv Immunol 1986;39:177-253
  • Everts V, Vanderzee E, Creemers L, Beertsen W. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 1996;28(4):229-45
  • Smith ME. Phagocytosis of myelin in demyelinative disease: a review. Neurochem Res 1999;24(2):261-8
  • Doherty GJ, Mcmahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009;78:857-902
  • Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic 2009;10(4):364-71
  • Shao YF, Akmentin W, Toledo-Aral JJ, Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. J Cell Biol 2002;157(4):679-91
  • Meier O, Boucke K, Hammer SV, Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002;158(6):1119-31
  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004;10(3):310-15
  • Goncalves C, Mennesson E, Fuchs R, Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther 2004;10(2):373-85
  • Orth JD, Krueger EW, Weller SG, Mcniven MA. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res 2006;66(7):3603-10
  • Orth JD, Mcniven MA. Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Res 2006;66(23):11094-6
  • Goldstein JL, Brown MS, Anderson RGW, Receptor-mediated endocytosis – concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1985;1:1-39
  • Motley A, Bright NA, Seaman MNJ, Robinson MS. Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 2003;162(5):909-18
  • Vieira AV, Lamaze C, Schmid SL. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996;274(5295):2086-9
  • Laporte SA, Oakley RH, Zhang J, The beta(2)-adrenergic receptor/beta arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 1999;96(7):3712-17
  • Maudsley S, Pierce KL, Zamah AM, The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 2000;275(13):9572-80
  • Kirchhausen T. Imaging endocytic clathrin structures in living cells. Trends Cell Biol 2009;19(11):596-605
  • Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002;3(8):600-14
  • Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007;8(3):185-94
  • Scherer PE, Lewis RY, Volonte D, Cell-type and tissue-specific expression of caveolin-2 – caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997;272(46):29337-46
  • Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 2009;185(3):381-5
  • Landh T. From entangled membranes to eclectic morphologies – cubic membranes as subcellular space organizers. FEBS Lett 1995;369(1):13-7
  • Oh P, Mcintosh DP, Schnitzer JE. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998;141(1):101-14
  • Pelkmans L, Burli T, Zerial M, Helenius A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004;118(6):767-80
  • Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001;3(5):473-83
  • Sandvig K, Torgersen ML, Raa HA, Van Deurs B. Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 2008;129(3):267-76
  • Norkin LC, Anderson HA, Wolfrom SA, Oppenheim A. Caveolar endocytosis of Simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J Virol 2002;76(10):5156-66
  • Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998;141(4):905-15
  • Sottile J, Chandler J. Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol Biol Cell 2005;16(2):757-68
  • Sharma DK, Brown JC, Cheng ZJ, The glycosphingolipid, lactosylceramide, regulates beta(1)-integrin clustering and endocytosis. Cancer Res 2005;65(18):8233-41
  • Frick M, Bright NA, Riento K, Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 2007;17(13):1151-6
  • Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 2006;8(1):46-54
  • Ait-Slimane T, Galmes R, Trugnan G, Maurice M. Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol Biol Cell 2009;20(17):3792-800
  • Lu YJ, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2002;54(5):675-93
  • Cheng ZJ, Singh RD, Sharma DK, Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell 2006;17(7):3197-10
  • Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002;2(4):411-23
  • Kirkham M, Fujita A, Chadda R, Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 2005;168(3):465-76
  • Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007;8(8):603-12
  • Lundmark R, Doherty GJ, Howes MT, The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 2008;18(22):1802-8
  • Grassart A, Dujeancourt A, Lazarow PB, Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep 2008;9(4):356-62
  • Matko J, Bodnar A, Vereb G, GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur J Biochem 2002;269(4):1199-208
  • Sauvonnet N, Dujeancourt A, Dautry-Varsat A. Cortactin and dynamin are required for the clathrinin-dependent endocytosis of gamma c cytokine receptor. J Cell Biol 2005;168(1):155-63
  • Fattakhova G, Masilamani M, Borrego F, The high-affinity immunoglobulin-E receptor (Fc epsilon RI) is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic 2006;7(6):673-85
  • Peng M, Yin N, Zhang W. Endocytosis of Fc alpha R is clathrin and dynamin dependent, but its cytoplasmic domain is not required. Cell Res 2010;20(2):223-37
  • Naslavsky N, Weigert R, Donaldson JG. Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 2004;15(8):3542-52
  • Houndolo T, Boulay PL, Claing A. G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J Biol Chem 2005;280(7):5598-604
  • Kang YS, Zhao XH, Lovaas J, Clathrin-independent internalization of normal cellular prion protein in neuroblastoma cells is associated with the Arf6 pathway. J Cell Sci 2009;122(22):4062-9
  • Lau AW, Chou MM. The adaptor complex AP-2 regulates post-endocytic trafficking through the non-clathrin Arf6-dependent endocytic pathway. J Cell Sci 2008;121(24):4008-17
  • Qian ZM, Li HY, Sun HZ, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002;54(4):561-87
  • Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006;121(2):159-76
  • O'DONNELL KA, Yu DN, Zeller KI, Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. Mol Cell Biol 2006;26(6):2373-86
  • Bartlett DW, Davis ME. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem 2007;18(2):456-68
  • Pan X, Guan J, Yoo J-W, Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int J Pharm 2008;358(1-2):263-70
  • Mishra V, Mahor S, Rawat A, Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14(1):45-53
  • Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood-brain-barrier. J Cell Sci 1993;104:521-32
  • Visser CC, Voorwinden LH, Crommelin DJA, Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res 2004;21(5):761-9
  • Fishman JB, Rubin JB, Handrahan JV, Receptor-mediated transcytosis of transferring across the blood-brain barrier. J Neurosci Res 1987;18(2):299-304
  • Morgan EH, Moos T. Mechanism and developmental changes in iron transport across the blood-brain barrier. Dev Neurosci 2002;24(2-3):106-13
  • Broadwell RD, Bakercairns BJ, Friden PM, Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp Neurol 1996;142(1):47-65
  • Friden PM, Walus LR, Musso GF, Antitransferrin receptor antibody and antibody-drug conjugates cross the blood-brain-barrier. Proc Natl Acad Sci USA 1991;88(11):4771-5
  • Huwyler J, Wu DF, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996;93(24):14164-9
  • Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [I-125] transferrin through the rat blood-brain-barrier. Brain Res 1995;683(2):164-71
  • Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2005;2(5):373-83
  • Xu L, Pirollo KF, Tang WH, Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 1999;10(18):2941-52
  • Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis 2006;12(134-135):1185-98
  • Roepstorff K, Grovdal L, Grandal M, Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 2008;129(5):563-78
  • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Mat Biotechnol 2005;23(9):1147-57
  • Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology 2009;77(6):400-10
  • Song S, Liu D, Peng J, Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int J Pharm 2008;363(1-2):155-61
  • Tseng C-L, Wang T-W, Dong G-C, Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007;28(27):3996-4005
  • Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 2006;114(3):277-87
  • Tseng C-L, Su W-Y, Yen K-C, The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009;30(20):3476-85
  • Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009;30(29):5737-50
  • Sigismund S, Argenzio E, Tosoni D, Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 2008;15(2):209-19
  • East L, Isacke CM. The mannose receptor family. Biochim Biophys Acta 2002;1572(2-3):364-86
  • Beltzer JP, Spiess M. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma-membrane coated vesicles. EMBO J 1991;10(12):3735-42
  • Weigel PH, Yik JH. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim Biophys Acta 2002;1572(2-3):341-63
  • Poupon V, Girard M, Legendre-Guillemin V, Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly. Proc Natl Acad Sci USA 2008;105(1):168-73
  • Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 2008;5(6):703-24
  • Weis WI, Drickamer K. Trimeric structure of a C-type mannose-binding protein. Structure 1994;2(12):1227-40
  • Connaris H, Crocker PR, Taylor GL. Enhancing the receptor affinity of the sialic acid-binding domain of vibrio cholerae sialidase through multivalency. J Biol Chem 2009;284(11):7339-51
  • Srinivas O, Larrieu P, Duverger E, Synthesis of glycocluster-tumor antigenic peptide conjugates for dendritic cell targeting. Bioconjug Chem 2007;18(5):1547-54
  • Issa MM, Koping-Hoggard M, Tommeraas K, Targeted gene delivery with trisaccharide-substituted chitosan oligomers in vitro and after lung administration in vivo. J Control Release 2006;115(1):103-12
  • Gabor F, Bogner E, Weissenboeck A, Wirth M. The lectin–cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 2004;56(4):459-80
  • Petrossian K, Banner LR, Oppenheimer SB. Lectin binding and effects in culture on human cancer and non-cancer cell lines: examination of issues of interest in drug design strategies. Acta Histochem 2007;109(6):491-500
  • Sakuma S, Yano T, Masaoka Y, In vitro/in vivo biorecognition of lectin-immobilized fluorescent nanospheres for human colorectal cancer cells. J Control Release 2009;134(1):2-10
  • Gao XL, Wang T, Wu BX, Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles. Biochem Biophys Res Commun 2008;377(1):35-40
  • Russell-Jones GJ, Veitch H, Arthur L. Lectin-mediated transport of nanoparticles across Caco-2 and OK cells. Int J Pharm 1999;190(2):165-74
  • Yin Y, Chen D, Qiao M, Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release 2006;116(3):337-45
  • Gao X, Tao W, Lu W, Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 2006;27(18):3482-90
  • Huang SN, Swaan PW. Involvement of a receptor-mediated component in cellular translocation of riboflavin. J Pharmacol Exp Ther 2000;294(1):117-25
  • Rao PN, Levine E, Myers MO, Elevation of serum riboflavin carrier protein in breast cancer. Cancer Epidemiol Biomark 1999;8(11):985-90
  • Holladay SR, Yang ZF, Kennedy MD, Riboflavin-mediated delivery of a macromolecule into cultured human cells. Biochim Biophys Acta 1999;1426(1):195-204
  • Maurer ME, Cooper JA. Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein. J Cell Sci 2005;118(22):5345-55
  • Zhai XY, Nielsen R, Birn H, Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney. Kidney Int 2000;58(4):1523-33
  • Russell-Jones GJ, Arthur L, Walker H. Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. Int J Pharm 1999;179(2):247-55
  • Ivanov AI, Nusrat A, Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 2004;15(1):176-88
  • Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006;8(11):1223-34
  • Caswell PT, Norman JC. Integrin trafficking and the control of cell migration. Traffic 2006;7(1):14-21
  • Altankov G, Grinnell F. Fibronectin receptor internalization and AP-2 complex reorganization in potassium-depleted fibroblasts. Exp Cell Res 1995;216(2):299-309
  • De Deyne PG, O'NEILL A, Resneck WG, The vitronectin receptor associates with clathrin-coated membrane domains via the cytoplasmic domain of its beta(5) subunit. J Cell Sci 1998;111:2729-40
  • Liu L, He B, Liu WM, Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem 2007;282(43):31631-42
  • Upla P, Marjomaki V, Kankaanpaa P, Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol Biol Cell 2004;15(2):625-36
  • Caswell P, Norman J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 2008;18(6):257-63
  • Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003;3(5):362-74
  • Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev 2010;29(1):223-37
  • Lutolf MP, Raeber GP, Zisch AH, Cell-responsive synthetic hydrogels. Adv Mater 2003;15(11):883-92
  • Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 2002;60(2):217-23
  • Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997;15(6):542-6
  • Schiffelers RM, Koning GA, Ten Hagen TLM, Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 2003;91(1-2):115-22
  • Bibby DC, Talmadge JE, Dalal MK, Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int J Pharm 2005;293(1-2):281-90
  • Liu PF, Wang HZ, Li YG, Duan YR. Preparation of DHAQ-loaded PLA-PLL-RGD nanoparticles and comparison of antitumor efficacy to hepatoma and breast carcinoma. J Macromol Sci A 2009;46(10):1024-9
  • Danhier F, Vroman B, Lecouturier N, Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 2009;140(2):166-73
  • Wender PA, Galliher WC, Goun EA, The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 2008;60(4-5):452-72
  • Frankel AD, Pabo CO. Cellular uptake of the TAT protein from human immunodeficiency virus. Cell 1988;55(6):1189-93
  • Futaki S, Suzuki T, Ohashi W, Arginine-rich peptides – an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001;276(8):5836-40
  • Wender PA, Mitchell DJ, Pattabiraman K, The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 2000;97(24):13003-8
  • Futaki S, Nakase I, Taclokoro A, Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 2007;35:784-7
  • Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 1998;8(2):84-7
  • Thoren PEG, Persson D, Karlsson M, Norden B. The antennapedia peptide penetratin translocates across lipid bilayers – the first direct observation. FEBS Lett 2000;482(3):265-8
  • Derossi D, Joliot AH, Chassaing G, Prochiantz A. The 3rd helix of the antennapaedia homeodomain translocates through biological membranes. J Biol Chem 1994;269(14):10444-50
  • Suzuki T, Futaki S, Niwa M, Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 2002;277(4):2437-43
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008;60(4-5):548-58
  • Richard JP, Melikov K, Vives E, Cell-penetrating peptides – a reevaluation of the mechanism of cellular uptake. J Biol Chem 2003;278(1):585-90
  • Duchardt F, Fotin-Mleczek M, Schwarz H, A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 2007;8(7):848-66
  • Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 2006;281(6):3544-51
  • Khalil IA, Kogure K, Futaki S, Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 2007;14(8):682-9
  • Tkachenko AG, Xie H, Liu Y, Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 2004;15(3):482-90
  • Zelphati O, Szoka FC Jr. Intracellular distribution and mechanism of delivery of oligonucleotides mediated by cationic lipids. Pharm Res 1996;13(9):1367-72
  • Park YJ, Liang JF, Ko KS, Low molecular weight protamine as an efficient and nontoxic gene carrier: in vitro study. J Gene Med 2003;5(8):700-11
  • Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005;57(4):529-45
  • Yandek LE, Pokorny A, Floren A, Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys J 2007;92(7):2434-44
  • Watkins CL, Brennan P, Fegan C, Cellular uptake, distribution and cytotoxicity of the hydrophobic cell penetrating peptide sequence PFVYLI linked to the proapoptotic domain peptide PAD. J Control Release 2009;140(3):237-44
  • Saalik P, Padari K, Niinep A, Protein delivery with transportans is mediated by caveolae rather than flotillin-dependent pathways. Bioconjug Chem 2009;20(5):877-87
  • Salazar MD, Ratnam M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev 2007;26(1):141-52
  • Nakashima-Matsushita N, Homma T, Yu S, Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum 1999;42(8):1609-16
  • Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 2004;56(8):1067-84
  • Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004;56(8):1127-41
  • Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 2008;41(1):120-9
  • Zhao XB, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5(3):309-19
  • Schneider RL, Schmitt F, Frochot C, Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg Med Chem 2005;13(8):2799-808
  • Zheng Y, Cai Z, Song X, Receptor mediated gene delivery by folate conjugated N-trimethyl chitosan in vitro. Int J Pharm 2009;382(1-2):262-9
  • Esmaeili F, Dinarvand R, Ghahremani MH, Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly(lactide-co-glycolide) nanoparticles. AntiCancer Drug 2010;21(1):43-52
  • Pan J, Feng S-S. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 2008;29(17):2663-72
  • Wang Y, Yu L, Han L, Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 2007;337(1-2):63-73
  • Mcneeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 2009;30(23-24):3986-95
  • Quintana A, Raczka E, Piehler L, Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002;19(9):1310-16
  • Kukowska-Latallo JF, Candido KA, Cao Z, Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65(12):5317-24
  • Veldhoen S, Laufer SD, Trampe A, Restle T. Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res 2006;34(22):6561-73
  • Park JS, Han TH, Lee KY, N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release 2006;115(1):37-45
  • Coester C, Nayyar P, Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm 2006;62(3):306-14
  • Richard JP, Melikov K, Brooks H, Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 2005;280(15):15300-6
  • Perumal OP, Inapagolla R, Kannan S, Kannan RM. The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008;29(24-25):3469-76
  • Huth US, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release 2006;110(3):490-504
  • Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005;26(15):2713-22
  • Hu Y, Xie J, Tong YW, Wang CH. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release 2007;118(1):7-17
  • Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 2002;19(10):1488-94
  • Chavanpatil MD, Khdair A, Panyam J. Surfactant-polymer nanoparticles: a novel platform for sustained and enhanced cellular delivery of water-soluble molecules. Pharm Res 2007;24(4):803-10
  • Qaddoumi MG, Ueda H, Yang J, The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 2004;21(4):641-8
  • Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 2002;233(1-2):51-9
  • Vercauteren D, Vandenbroucke RE, Jones AT, The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 2010;18(3):561-9
  • Munn AL, Silveira L, Elgort M, Payne GS. Viability of clathrin heavy-chain-deficient Saccharomyces Cerevisiae is compromised by mutations at numerous loci – implications for the suppression hypothesis. Mol Cell Biol 1991;11(8):3868-78
  • Nelson KK, Lemmon SK. Suppressors of clathrin deficiency – overexpression of ubiquitin rescues lethal strains of clathrin-deficient Saccharomyces Cerevisiae. Mol Cell Biol 1993;13(1):521-32
  • Huang FT, Khvorova A, Marshall W, Sorkin A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 2004;279(16):16657-61
  • Spoden G, Freitag K, Husmann M, Clathrin- and caveolin-independent entry of human papillomavirus type 16-involvement of tetraspanin-enriched microdomains (TEMs). PLoS One 2008;3(10):e3313
  • Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(d, l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 2003;20(2):212-20
  • Huth US, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release 2006;110(3):490-504
  • Van Der MA, Huth US, Hafele SY, Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res 2007;24(8):1590-8
  • Nayak S, Lee H, Chmielewski J, Lyon LA. Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 2004;126(33):10258-9
  • De Diesbach P, N'KULI F, Berens C, Receptor-mediated endocytosis of phosphodiester oligonucleotides in the HepG2 cell line: evidence for non-conventional intracellular trafficking. Nucleic Acids Res 2002;30(7):1512-21
  • Des Rieux A, Ragnarsson EG, Gullberg E, Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 2005;25(4-5):455-65
  • Kim SH, Choi HJ, Lee KW, Interaction of SPIN90 with syndapin is implicated in clathrin-mediated endocytic pathway in fibroblasts. Genes Cells 2006;11(10):1197-11
  • Kahn E, Menetrier F, Vejux A, Flow cytometry and spectral imaging multiphoton microscopy analysis of CD36 expression with quantum dots 605 of untreated and 7-ketocholesterol-treated human monocytic cells. Anal Quant Cytol Histol 2006;28(6):316-30
  • Mo Y, Lim LY. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 2005;107(1):30-42
  • Yumoto R, Nishikawa H, Okamoto M, Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am J Physiol Lung C 2006;290(5):L946-955
  • Amidi M, Romeijn SG, Borchard G, Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006;111(1-2):107-16
  • Cherukuri A, Frye J, French T, FITC-poly-D-lysine conjugates as fluorescent probes to quantify hapten-specific macrophage receptor binding and uptake kinetics. Cytometry 1998;31(2):110-24
  • Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 2005;12(3):468-74
  • Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 2004;21(2):344-53
  • Ma Z, Lim LY. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 2003;20(11):1812-19
  • Serpe L, Guido M, Canaparo R, Intracellular accumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines. J Nanosci Nanotechnol 2006;6(9-10):3062-9
  • Gotte M, Sofeu Feugaing DD, Kresse H. Biglycan is internalized via a chlorpromazine-sensitive route. Cell Mol Biol Lett 2004;9(3):475-81
  • Qaddoumi MG, Gukasyan HJ, Davda J, Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol. Vis 2003;9(68-69):559-68
  • Bauer IW, Li SP, Han YC, Internalization of hydroxyapatite nanoparticles in liver cancer cells. J Mater Sci Mater Med 2008;19(3):1091-5
  • Manunta M, Nichols BJ, Tan PH, Gene delivery by dendrimers operates via different pathways in different cells, but is enhanced by the presence of caveolin. J Immunol Methods 2006;314(1-2):134-46
  • Thomsen P, Roepstorff K, Stahlhut M, Van Deurs B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002;13(1):238-50
  • Macia E, Ehrlich M, Massol R, Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 2006;10(6):839-50
  • Van Hamme E, Dewerchin HL, Cornelissen E, Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. J Gen Virol 2008;89:2147-56
  • Parton RG, Joggerst B, Simons K. Regulated internalization of caveolae. J Cell Biol 1994;127(5):1199-15
  • Shepherd PR, Reaves BJ, Davidson HW. Phosphoinositide 3-kinases and membrane traffic. Trends Cell Biol 1996;6(3):92-7
  • Nakase I, Niwa M, Takeuchi T, Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol Ther 2004;10(6):1011-22
  • Corvera S, Czech MP. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 1998;8(11):442-6
  • Ui M, Okada T, Hazeki K, Hazeki O. Wortmannin as a unique probe for an intracellular signalling protein, phosphoinositide 3-kinase. Trends Biochem Sci 1995;20(8):303-7
  • Araki N, Hamasaki M, Egami Y, Hatae T. Effect of 3-methyladenine on the fusion process of macropinosomes in EGF-stimulated A431 cells. Cell Struct Funct 2006;31(2):145-57
  • Enriquez De A, Diebold Y, Calonge M, Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci 2006;47(4):1416-25
  • Dijkstra J, Van Galen M, Scherphof GL. Effects of ammonium chloride and chloroquine on endocytic uptake of liposomes by Kupffer cells in vitro. Biochim Biophys Acta 1984;804(1):58-67
  • Hunziker W, Whitney JA, Mellman I. Brefeldin A and the endocytic pathway possible implications for membrane traffic and sorting. FEBS Lett 1992;307(1):93-6
  • Oishi M, Kataoka K, Nagasaki Y. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjug Chem 2006;17(3):677-88
  • Hashimoto M, Morimoto M, Saimoto H, Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjug Chem 2006;17(2):309-16
  • Dijkstra J, Van Galen M, Scherphof G. Effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of liposomes by Kupffer cells in culture. Biochim Biophys Acta 1985;845(1):34-42
  • Ramge P, Unger RE, Oltrogge JB, Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 2000;12(6):1931-40
  • Boyd AE III, Bolton WE, Brinkley BR. Microtubules and beta cell function: effect of colchicine on microtubules and insulin secretion in vitro by mouse beta cells. J Cell Biol 1982;92(2):425-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.