757
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Bone marrow-targeted liposomal carriers

, PhD, , , &
Pages 317-328 | Published online: 31 Jan 2011

Bibliography

  • Janknegt R, de Marie S, Bakker-Woudenberg IA, Crommelin DJ. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet 1992;23:279-91
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specificity nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318
  • Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268:235-7
  • Awasthi VD, Garcia D, Goins BA, Phillips WT. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm 2003;253:121-32
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60
  • Van Furth R. Development and distribution of mononuclear phagocytes. In: Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York; 1992
  • Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 1983;52:223-61
  • Fadok VA, Voelker DR, Campbell PA, Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992;148:2207-16
  • Taylor PR, Martinez-Pomares L, Stacey M, Macrophage receptors and immune recognition. Annu Rev Immunol 2005;23:901-44
  • Sou K, Goins B, Takeoka S, Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo. Biomaterials 2007;28:2655-66
  • Sou K, Goins B, Leland MM, Bone marrow-targeted liposomal carriers: a feasibility study in nonhuman primates. Nanomedicine 2010;5:41-9
  • Mistry PK, Wraight EP, Cox TM. Therapeutic delivery of proteins to macrophages: implications for treatment of Gaucher's disease. Lancet 1996;348:1555-9
  • Hawkes CA, McLaurin J. Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci USA 2009;106:1261-6
  • Gamazo C, Prior S, Concepcion Lecaroz M, Biodegradable gentamicin delivery systems for parenteral use for the treatment of intracellular bacterial infections. Expert Opin Drug Deliv 2007;4:677-88
  • Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 2008;127:50-8
  • Romero EL, Morilla MJ. Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv 2008;5:805-23
  • Schafer V, von Briesen H, Andreesen R, Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res 1992;9:541-6
  • Chellat F, Merhi Y, Moreau A, Yahia L. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 2005;26:7260-75
  • Kim SS, Ye C, Kumar P, Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol Ther 2010;18:993-1001
  • Moreno PR, Falk E, Palacios IF, Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994;90:775-8
  • Wilson HM, Barker RN, Erwig LP. Macrophages: promising targets for the treatment of atherosclerosis. Curr Vasc Pharmacol 2009;7:234-43
  • Antoniades C, Psarros C, Tousoulis D, Nanoparticles: a promising therapeutic approach in atherosclerosis. Curr Drug Deliv 2010;7:303-11
  • Kawakami S, Sato A, Nishikawa M, Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 2000;7:292-9
  • Wijagkanalan W, Kawakami S, Takenaga M, Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J Control Release 2008;125:121-30
  • Matsui M, Shimizu Y, Kodera Y, Targeted delivery of oligomannose-coated liposome to the omental micrometastasis by peritoneal macrophages from patients with gastric cancer. Cancer Sci 2010;101:1670-7
  • Nahar M, Jain NK. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 2009;26:2588-98
  • Mahajan S, Prashant CK, Koul V, Receptor specific macrophage targeting by mannose-conjugated gelatin nanoparticles- an in vitro and in vivo study. Curr Nanosci 2010;6:413-21
  • Higuchi Y, Oka M, Kawakami S, Hashida M. Mannosylated semiconductor quantum dots for the labeling of macrophages. J Control Release 2008;125:131-6
  • Kumar PV, Asthana A, Dutta T, Jain NK. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J Drug Target 2006;14:546-56
  • Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 2008;5:703-24
  • Wu F, Wuensch SA, Azadniv M, Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses. Mol Pharm 2009;6:1506-17
  • Haensler J, Schuber F. Preparation of neo-galactosylated liposomes and their interaction with mouse peritoneal macrophages. Biochim Biophys Acta 1988;946:95-105
  • Fujiwara M, Baldeschwieler JD, Grubbs RH. Receptor-mediated endocytosis of poly(acrylic acid)-conjugated liposomes by macrophages. Biochim Biophys Acta 1996;1278:59-67
  • Rensen PC, Gras JC, Lindfors EK, Selective targeting of liposomes to macrophages using a ligand with high affinity for the macrophage scavenger receptor class A. Curr Drug Discov Technol 2006;3:135-44
  • Lipinski MJ, Frias JC, Amirbekian V, Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc Imaging 2009;2:637-47
  • Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 2004;213:165-72
  • Xia W, Hilgenbrink AR, Matteson EL, A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 2009;113:438-46
  • Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;5:309-19
  • Fliedner TM, Steinbach KH, Hoelzer D. Adaptation to environmental change: the role of cell-renewal systems. In: Finckh ES, editor, The effects of environment on cells and tissues. Excerpta Medica, Amsterdam; 1976
  • Fliedner TM, Graessle D, Paulsen C, Reimers K. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 2002;17:405-26
  • Hussain MM, Mahley RW, Boyles JK, Chylomicron-chylomicron remnant clearance by liver and bone marrow in rabbits. Factors that modify tissue-specific uptake. J Biol Chem 1989;264:9571-82
  • Hussain MM, Mahley RW, Boyles JK, Chylomicron metabolism. Chylomicron uptake by bone marrow in different animal species. J Biol Chem 1989;264:17931-8
  • Furze RC, Rankin SM. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J 2008;22:3111-19
  • Furze RC, Rankin SM. Neutrophil mobilization and clearance in the bone marrow. Immunology 2008;125:281-8
  • Sadahira Y, Mori M. Role of the macrophage in erythropoiesis. Pathol Int 1999;49:841-8
  • Yoshida H, Kawane K, Koike M, Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 2005;437:754-8
  • Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood 2008;112:470-8
  • Winkler IG, Sims NA, Pettit AR, Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSC. Blood 2010;116:4815-28
  • Porter CJ, Moghimi SM, Illum L, Davis SS. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett 1992;305:62-6
  • Schettini DA, Ribeiro RR, Demicheli C, Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size. Int J Pharm 2006;315:140-7
  • Chi B, Park SJ, Park MH, Oligopeptide delivery carrier for osteoclast precursors. Bioconjug Chem 2010;21:1473-8
  • Harris TJ, Green JJ, Fung PW, Tissue-specific gene delivery via nanoparticle coating. Biomaterials 2010;31:998-1006
  • Moghimi SM. Exploiting bone marrow microvascular structure for drug delivery and future therapies. Adv Drug Deliv Rev 1995;17:61-73
  • Huang TS. Passage of foreign particles through the sinusoidal wall of the rabbit bone marrow-an electron microscopic study. Acta Pathol Jpn 1971;21:349-67
  • Allen TM, Austin GA, Chonn A, Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta 1991;1061:56-64
  • Nishikawa K, Arai H, Inoue K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem 1990;265:5226-31
  • Szabo R, Peiser L, Pluddemann A, Uptake of branched polypeptides with poly[L-lys] backbone by bone-marrow culture-derived murine macrophages: the role of the class A scavenger receptor. Bioconjug Chem 2005;16:1442-50
  • Tokuda H, Masuda S, Takakura Y, Specific uptake of succinylated proteins via a scavenger receptor-mediated mechanism in cultured brain microvessel endothelial cells. Biochem Biophys Res Commun 1993;196:18-24
  • Allen TM, The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 1994;13:285-309
  • Tsuchida E. Blood Substitute: present and future perspective. Elsevier Science, Amsterdam; 1998
  • Tsuchida E, Sou K, Nakagawa A, Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjugate Chem 2009;20:1419-40
  • Sakai H, Sou K, Horinouchi H, Haemoglobin-vesicles as artificial oxygen carriers: present situation and future visions. J Intern Med 2008;263:4-15
  • Sou K, Klipper R, Goins B, Circulation kinetics and organ distribution of Hb-vesicles developed as a red blood cell substitute. J Pham Exp Ther 2005;312:702-9
  • Taguchi K, Urata Y, Anraku M, Pharmacokinetic study of enclosed hemoglobin and outer lipid component after the administration of hemoglobin vesicles as an artificial oxygen carrier. Drug Metab Dispos 2009;37:1456-63
  • Sakai H, Horinouchi H, Tomiyama K, Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. Am J Pathol 2001;159:1079-88
  • Uster PS, Allen TM, Daniel BE, Insertion of poly-(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett 1996;386:243-6
  • Sou K, Endo T, Takeoka S, Tsuchida E. Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjug Chem 2000;11:372-9
  • Sou K, Naito Y, Endo T, Effective encapsulation of proteins into size-controlled phospholipid vesicles using freeze-thawing and extrusion. Biotechnol Prog 2003;19:1547-52
  • Sato T, Sakai H, Sou K, Static structures and dynamics of hemoglobin vesicle (HBV) developed as a transfusion alternative. J Phys Chem B 2009;113:8418-28
  • Goins B, Phillips WT. The use of scintigraphic imaging as a tool in the development of liposome formulations. Prog Lipid Res 2001;40:95-123
  • Gabizon A, Chisin R, Amselem S, Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br J Cancer 1991;64:1125-32
  • Laverman P, Brouwers AH, Dams ET, Preclinical and clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. J Pharmacol Exp Ther 2000;293:996-1001
  • Phillips WT, Rudolph AS, Goins B, A simple method for producing a technetium-99m labeled liposome which is stable in vivo. Nucl Med Biol 1992;19:539-47
  • Morrie E, Kricun MD. Red–yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 1985;14:10-19
  • Oyajobi BO, Munoz S, Kakonen R, Detection of myeloma in skeleton of mice by whole-body optical fluorescence imaging. Mol Cancer Ther 2007;6:1701-8
  • Gupta S, Pal A, Vyas SP. Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin Drug Deliv 2010;7:371-402
  • Boitano AE, Wang J, Romeo R, Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010;329:1345-8
  • Langer R. Drug delivery and targeting. Nature 1998;392:5-10
  • Legendre JY, Szoka FC. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 1992;9:1235-42
  • Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 2010;142:267-76
  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000;60:1197-201
  • Andresen TL, Jensen SS, Jorgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005;44:68-97
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-70
  • Mantovani A, Sozzani S, Locati M, Macrophage polarization: tumor-assosiated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-55
  • Dove A. Cell-based therapies go live. Nature Biotechnol 2002;20:339-43
  • Burke B, Sumner S, Maitland N, Lewis CE. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol 2002;72:417-28
  • Hinds KA, Hill JM, Shapiro EM, Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 2003;102:867-72
  • Calvi LM, Adams GB, Weibrecht KW, Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841-64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.