500
Views
29
CrossRef citations to date
0
Altmetric
Reviews

A comparison of peptide and folate receptor targeting of cancer cells: from single agent to nanoparticle

Pages 281-298 | Published online: 10 Feb 2011

Bibliography

  • Zhao XB, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 2008;8(3):309-19
  • de Rosales RTM, Arstad E, Blower PJ. Nuclear imaging of molecular processes in cancer. Target Oncol 2009;4(3):183-97
  • Sonvico F, Mornet S, Vasseur S, Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 2005;16(5):1181-8
  • Zhang ZW, Jia J, Lai YQ, Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg Med Chem 2010;18(15):5528-34
  • Han RC, Yu M, Zheng Q, A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir 2009;25(20):12250-5
  • Xu L, Pirollo KF, Chang EH. Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release 2001;74(1-3):115-28
  • Turk MJ, Reddy JA, Chmielewski JA, Low PS. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs. Biochim Biophys Acta Biomembr 2002;1559(1):56-68
  • Wood KC, Azarin SM, Arap W, Tumor-targeted gene delivery using molecularly engineered hybrid polymers functionalized with a tumor-homing peptide. Bioconjug Chem 2008;19(2):403-5
  • Bharali DJ, Khalil M, Gurbuz M, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomed 2009;4(1):1-7
  • Jabbari E. Targeted delivery with peptidomimetic conjugated self-assembled nanoparticles. Pharm Res 2009;26(3):612-30
  • Crombez L, Morris MC, Deshayes S, Peptide-based nanoparticle for ex vivo and in vivo dug delivery. Curr Pharm Des 2008;14(34):3656-65
  • Gillitzer E, Willits D, Young M, Douglas T. Chemical modification of a viral cage for multivalent presentation. Chem Commun 2002;(20):2390-91
  • Uchida M, Flenniken ML, Allen M, Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 2006;128(51):16626-33
  • Destito G, Yeh R, Rae CS, Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 2007;14(10):1152-62
  • Ren Y, Wong SM, Lim LY. Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. Bioconjug Chem 2007;18(3):836-43
  • Lockney DM, Guenther RN, Loo L, The red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle. Bioconj Chem 2011;22(1):67-73
  • Juliano RL, Alam R, Dixit V, Kang HM. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdisciplinary Reviews. Nanomed Nanobiotechnol 2009;1(3):324-35
  • Hayat MA, editor, Colloidal gold, principles, methods, and applications. Volume 1. Academic Press, San Diego, London; 1989
  • Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998;37(20):2755-94
  • Huskens J, Mulder A, Auletta T, A model for describing the thermodynamics of multivalent host-guest interactions at interfaces. J Am Chem Soc 2004;126(21):6784-97
  • Plank C, Zauner W, Wagner E. Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 1998;34(1):21-35
  • Overbeek JT. Colloid stability in aqueous and non-aqueous media – introductory paper. Disc Faraday Soc 1966;(42):7-13
  • Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 1993;43(1-4):30-59
  • Flory PJ, Krigbaum WR. Thermodynamics of high polymer solutions. Annu Rev Phys Chem 1951;2:383-402
  • Hamaker HC. The London - Van Der Waals attraction between spherical particles. Physica 1937;4:1058-72
  • Xie H, Tkachenko AG, Glomm WR, Critical flocculation concentrations, binding isotherms, and ligand exchange properties of peptide-modified gold nanoparticles studied by UV-visible, fluorescence, and time-correlated single photon counting spectroscopies. Anal Chem 2003;75(21):5797-805
  • Feldherr C, Akin D. Identification of the nuclear transport enhancing factor in Sv40-transformed fibroblasts. Mol Biol Cell 15(12):7043-9
  • Kaufman ED, Belyea J, Johnson MC, Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir 2007;23(11):6053-62
  • Ryan JA, Overton KW, Speight ME, Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Anal Chem 2007;79(23):9150-9
  • Liu YL, Shipton MK, Ryan J, Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal Chem 2007;79(6):2221-9
  • Maus L, Dick O, Bading H, Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors. Acs Nano 2010;4(11):6617-28
  • Maus L, Spatz JP, Fiammengo R. Quantification and reactivity of functional groups in the ligand shell of PEGylated gold nanoparticles via a fluorescence-based assay. Langmuir 2009;25(14):7910-17
  • Wang T, D'Souza GGM, Bedi D, Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein. Nanomedicine 2010;5(4):563-74
  • Thurn KT, Brown EMB, Wu A, Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2007;2(9):430-41
  • Liu YL, Franzen S. Factors determining the efficacy of nuclear delivery of antisense oligonucleotides by gold nanoparticles. Bioconjug Chem 2008;19(5):1009-16
  • Hermanson GT. Bioconjugate techniques. Academic Press, London; 1996
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 2001;40:2004-21
  • Martin AL, Hickey JL, Ablack AL, Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. J Nanopart Res 2010;12(5):1599-608
  • Zhang BL, Li YQ, Fang CY, Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 2009;5(23):2716-21
  • Liong M, Lu J, Kovochich M, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. Acs Nano 2008;2(5):889-96
  • Fisichella M, Dabboue H, Bhattacharyya S, Uptake of functionalized mesoporous silica nanoparticles by human cancer cells. J Nanosci Nanotech 2010;10(4):2314-24
  • Rosenholm J, Sahlgren C, Linden M. Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. J Mater Chem 2010;20(14):2707-13
  • Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resist Updates 2003;6(6):363-71
  • Zhang YD, Chen JJ, Zhang YQ, Panning and identification of a colon tumor binding peptide from a phage display peptide library. J Biomol Screen 2007;12(3):429-35
  • Rajotte D, Ruoslahti E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem 1999;274(17):11593-8
  • Rajotte D, Arap W, Hagedorn M, Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998;102(2):430-7
  • Kim Y, Lillo AM, Steiniger SCJ, Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 2006;45(31):9434-44
  • Yao VJ, Ozawa MG, Trepel M, Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am J Path 2005;166(2):625-36
  • Porkka K, Laakkonen P, Rajotte D, Bone marrow homing peptides from phage display libraries. Blood 1999;94(10):1107
  • Li RH, Hoess RH, Bennett JS, DeGrado WF. Use of phage display to probe the evolution of binding specificity and affinity in integrins. Protein Eng 2003;16(1):65-72
  • Ludtke JJ, Sololoff AV, Wong SC, In vivo selection and validation of liver-specific ligands using a new t7 phage peptide display system. Drug Deliv 2007;14(6):357-69
  • DeRisi J, Penland L, Brown PO, Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996;14(4):457-60
  • Fretz MM, Mastrobattista E, Koning GA, Strategies for cytosolic delivery of liposomal macromolecules. Int J Pharm 2005;298(2):305-9
  • Wagner E. Application of membrane-active peptides for nonviral gene delivery. Adv Drug Deliv Rev 1999;38(3):279-89
  • Foerg C, Ziegler U, Fernandez-Carneado J, Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape. Biochemistry 2005;44(1):72-81
  • Holm T, Johansson H, Lundberg P, Studying the uptake of cell-penetrating peptides. Nat Protocol 2006;1(2):1001-5
  • Xu ZL, Mizuguchi H, Sakurai F, Approaches to improving the kinetics of adenovirus-delivered genes and gene products. Adv Drug Deliv Rev 2005;57(5):781-802
  • Frankel AE. New HER2-directed therapies for breast cancer – Commentary re: C. I. Spiridon, et al, targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity. Clin Cancer Res 2002;8(6):1699-701
  • Mokotoff M, Chen J, Zhou JH, Ball ED. Targeting growth factor receptors with bispecific molecules. Curr Med Chem 1996;3(2):87-100
  • Park BW, Zhang HT, Wu CJ, Rationally designed anti-HER2/neu peptide mimetic disables p185(HER2/neu) tyrosine kinases in vitro and in vivo. Nat Biotech 2000;18(2):194-8
  • Urbanelli L, Ronchini C, Fontana L, Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 2001;313(5):965-76
  • Acevedo VD, Ittmann M, Spencer DM. Paths of FGFR-driven tumorigenesis. Cell Cycle 2009;8(4):580-8
  • Chen XA, Wang XH, Wang YS, Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Control Release 2010;145(1):17-25
  • Terada T, Mizobata M, Kawakami S, Basic fibroblast growth factor-binding peptide as a novel targeting ligand of drug carrier to tumor cells. J Drug Target 2006;14(8):536-45
  • Ruoslahti E, Reed J. Cell adhesion – New way to activate caspases. Nature 1999;397(6719):479-80
  • Richards J, Miller M, Abend J, Engineered fibronectin type III domain with a RGDWXE sequence binds with enhanced affinity and specificity to human alpha v beta 3 integrin. J Mol Biol 2003;326(5):1475-88
  • Kelland L. N-cadherin: a novel target for cancer therapy? Drugs Future 2007;32(10):925-30
  • Pool SE, Krenning EP, Koning GA, Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin Nucl Med 2010;40(3):209-18
  • de Boisferon MH, Raguin O, Thiercelin C, Improved tumor selectivity of radiolabeled peptides by receptor and antigen dual targeting in the neurotensin receptor model. Bioconjug Chem 2002;13(3):654-62
  • Alshoukr P, Rosant C, Maes V, Novel neurotensin analogues for radioisotope targeting to neurotensin receptor-positive tumors. Bioconjug Chem 2009;20(8):1602-10
  • Schroeder RPJ, Muller C, Reneman S, A standardised study to compare prostate cancer targeting efficacy of five radiolabelled bombesin analogues. Eur J Nucl Med Mol Imaging 2010;37(7):1386-96
  • Liu DJ, Overbey D, Watkinson LD, Comparative evaluation of Three Cu-64-labeled E-coli heat-stable enterotoxin analogues for PET imaging of colorectal cancer. Bioconj Chem 2010;21(7):1171-6
  • Hanaoka H, Mukai T, Tamamura H, Development of a In-111-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl Med Biol 2006;33(4):489-94
  • Vabeno J, Nikiforovich GV, Marshall GR. Insight into the binding mode for cyclopentapeptide antagonists of the CXCR4 receptor. Chem Biol Drug Des 2006;67(5):346-54
  • Dvir T, Banghart MR, Timko BP, Photo-targeted nanoparticles. Nano Lett 2010;10(1):250-4
  • Montet X, Montet-Abou K, Reynolds F, Nanoparticle imaging of integrins on tumor cells. Neoplasia 2006;8(3):214-22
  • Tkachenko AG, Xie H, Liu YL, Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 2004;15(3):482-90
  • Wang Z, Chui WK, Ho PC. Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm Res 2009;26(5):1162-71
  • Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 2008;60(4-5):537-47
  • Pujals S, Bastus NG, Pereiro E, Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide. Chembiochem 2009;10(6):1025-31
  • Nativo P, Prior IA, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. Acs Nano 2008;2(8):1639-44
  • Lagrange JL, Maublant J, Darcourt J. Positron emission tomography - role of F-18 fluorodeoxyglucose imaging in oncology. Bull Du Cancer 1995;82(8):611-22
  • Ke CY, Mathias CJ, Green MA. Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 2004;56(8):1143-60
  • Cheng Z, Xiong ZM, Subbarayan M, Cu-64-Labeled alpha-melanocyte-stimulating hormone analog for MicroPET imaging of melanocortin 1 receptor expression. Bioconjug Chem 2007;18(3):765-72
  • Ellerby HM, Bredesen DE, Fujimura S, John V. Hunter-killer peptide (HKP) for targeted therapy. J Med Chem 2008;51(19):5887-92
  • Harris TJ, Green JJ, Fung PW, Tissue-specific gene delivery via nanoparticle coating. Biomaterials 2010;31(5):998-1006
  • Loi M, Marchio S, Becherini P, Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release 2010;145(1):66-73
  • Negussie AH, Miller JL, Reddy G, Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 2010;143(2):265-73
  • Zhang H, Kusunose J, Kheirolomoom A, Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. Biomaterials 2008;29(12):1976-88
  • Clarke S, Pinaud F, Beutel O, Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett 2010;10(6):2147-54
  • Shan YM, Wang LP, Shi YH, NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling. Talanta 2008;75(4):1008-14
  • Turkevich J, Stevenson PC, Hillier J. A study of the nuclear and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 1951;(11):55-75
  • Frens G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 1973;241:20-2
  • Levy R, Thanh NTK, Doty RC, Rational and combinatorial design of peptide capping Ligands for gold nanoparticles. J Am Chem Soc 2004;126(32):10076-84
  • Auer S, Trovato A, Vendruscolo M. A condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation. Plos Comp Biol 2009;5(8):e1000458
  • Guerrero AR, Caballero L, Adeva A, Exploring the surface charge on peptide-gold nanoparticle conjugates by force spectroscopy. Langmuir 2010;26(14):12026-32
  • Duchesne L, Wells G, Fernig DG, Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles. Chembiochem 2008;9(13):2127-34
  • Leontowich AFG, Calver CF, Dasog M, Scott RWJ. Surface properties of water-soluble glycine-cysteamine-protected gold clusters. Langmuir 2010;26(2):1285-90
  • Serizawa T, Hirai Y, Aizawa M. Novel synthetic route to peptide-capped gold nanoparticles. Langmuir 2009;25(20):12229-34
  • Sun LL, Wang JE, Wang ZX. Recognition and transmembrane delivery of bioconjugated Fe2O3@Au nanoparticles with living cells. Nanoscale 2010;2(2):269-76
  • Ojea-Jimenez I, Puntes V. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J Am Chem Soc 2009;131(37):13320-7
  • Hosta L, Pla-Roca M, Arbiol J, Conjugation of kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjug Chem 2009;20(1):138-46
  • Surujpaul PP, Gutierrez-Wing C, Ocampo-Garcia B, Gold nanoparticles conjugated to [Tyr(3)]Octreotide peptide. Biophys Chem 2008;138(3):83-90
  • Templeton AC, Chen SW, Gross SM, Murray RW. Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers. Langmuir 1999;15(1):66-76
  • de la Fuente JM, Berry CC. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 2005;16(5):1176-80
  • Chanda N, Kattumuri V, Shukla R, Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 2010;107(19):8760-5
  • Lamaze C, Chuang TH, Terlecky LJ, Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 1996;382(6587):177-9
  • Johannes L, Lamaze C. Clathrin-dependent or not: Is it still the question? Traffic 2002;3(7):443-51
  • Le Roy C, Wrana JL. Clathrin and non-clathrin mediated endocytic regulation of cell signalling. Nature 2005;6:112-26
  • Griffin FM, Griffin JA, Leider JE, Silverstein SC. Studies on mechanism of phagocytosis. 1. Requirements for circumferential attachment of particle-bound ligands to specific receptors on macrophage plasma-membrane. J Exp Med 1975;142(5):1263-82
  • Griffin FM, Leider JE, Griffin JA, Silverstein SC. Mechanism of phagocytosis. Clin Res 1975;23(3):A415
  • Hillaireau H, Couvreur P. Nanocarriers' entry into the cell: relevance to drug delivery. Cell Mol Life Sci 2009;66(17):2873-96
  • Kim D, Park S, Lee JH, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 2007;129(24):7661-5
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010;12(7):2313-33
  • Trowbridge IS, Collawn JF, Hopkins CR. Signal-dependent membrane protein trafficking in the endocytic pathway. Annu Rev Cell Biol 1993;9:129-61
  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009;78:857-902
  • Farr GA, Zhang LG, Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci USA 2005;102(47):17148-53
  • Kim PS, Berger B, Wolf E. MultiCoil: a program for predicting two-and three-stranded coiled coils. Protein Sci 1997;6:1179-89
  • Rozema DB, Ekena K, Lewis DL, Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug Chem 2003;14(1):51-7
  • Sun LL, Liu DJ, Wang ZX. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir 2008;24(18):10293-7
  • See V, Free P, Cesbron Y, Cathepsin L Digestion of Nanobioconjugates upon Endocytosis. Acs Nano 2009;3(9):2461-8
  • Lamaze C, Dujeancourt A, Baba T, Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 2001;7:661-71
  • Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001;3:473-83
  • Damm EM, Pelkmans L, Kartenbeck J, Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 2005;168:477-88
  • Luga V, McLean S, Le Roy C, The extracellular domain of the TGF beta type II receptor regulates membrane raft partitioning. Biochem J 2009;421:119-31
  • Koleske AJ, Baltimore D, Lisanti MP. The reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 1995;92:1381-5
  • Carpenter G, Cohen S. I125 labeled human epidermal growth-factor - binding, internalization, and degradation in human fibroblasts. J Cell Biol 1976;71(1):159-71
  • Carpenter G, Cohen S. Human epidermal growth-factor and proliferation of human fibroblasts. J Cell Physiol 1976;88(2):227-37
  • Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma-membrane. J Cell Biol 1983;96(1):1-27
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class-Ii compartment – down-regulation by cytokines and bacterial products. J Exp Med 1995;182(2):389-400
  • Racoosin EL, Swanson JA. Macrophage Colony-Stimulating Factor (Rm-Csf) stimulates pinocytosis in bone marrow-derived macrophages. J Exp Med 1989;170(5):1635-48
  • Racoosin EL, Swanson JA. M-Csf-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J Cell Sci 1992;102:867-80
  • Haigler HT, McKanna JA, Cohen S. Rapid stimulation of pinocytosis in human carcinoma-cells a-431 by epidermal growth-factor. J Cell Biol 1979;83(1):82-90
  • Davies PF, Ross R. Mediation of pinocytosis in cultured arterial smooth-muscle and endothelial cells by platelet-derived growth-factor. J Cell Biol 1978;79(3):663-71
  • Barsagi D, Feramisco JR. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by Ras proteins. Science 1986;233(4768):1061-8
  • Amyere M, Payrastre B, Krause U, Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell 2000;11(10):3453-67
  • Zhang F, Andreassen P, Fender P, A transfecting peptide derived from adenovirus fiber protein. Gene Ther 1999;6:171-81
  • Bale SS, Kwon SJ, Shah DA, Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. Acs Nano 2010;4(3):1493-500
  • Resina S, Abes S, Turner JJ, Lipoplex and peptide-based strategies for the delivery of steric-block oligonucleotides. Int J Pharm 2007;344(1-2):96-102
  • Plank C, Oberhauser B, Mechtler K, The influence of endosome-disruptive peptides on gene-transfer using synthetic virus-like gene-transfer systems. J Biol Chem 1994;269(17):12918-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.