2,126
Views
233
CrossRef citations to date
0
Altmetric
Reviews

Silk fibroin biomaterials for controlled release drug delivery

&
Pages 797-811 | Published online: 01 Apr 2011

Bibliography

  • Langer R. Invited review: polymeric delivery systems for controlled drug release. Chem Eng Commun 1980;6:1-48
  • Danckwerts M, Fassih A. Implantable controlled release drug delivery systems: a review. Drug Dev Ind Pharm 1991;17:1465-502
  • Panilaitis B, Altman G, Chen J, Macrophage responses to silk. Biomaterials 2003;24:3079-85
  • Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci 2010;35:403-40
  • Leal-Egana A, Scheibel T. Silk-based materials for biomedical applications. Biotechnol Appl Biochem 2010;55:155-67
  • Tang X, Ding F, Yang Y, Evaluation of in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons. J Biomed Mater Res A 2009;91A:166-74
  • Meinel L, Hofmann S, Karageorgiou V, The inflammatory responses of silk films in vitro and in vivo. Biomaterials 2005;26:147-55
  • Altman GH, Diaz F, Jakuba C, Silk-based biomaterials. Biomaterials 2003;24:401-16
  • Horan RL, Antle K, Collette AL, In vitro degradation of silk fibroin. Biomaterials 2005;26:3385-93
  • Wang Y, Rudym DD, Walsh A, In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008;29:3415-28
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007;32:991-1007
  • Lawrence BD, Cronin-Golomb M, Georgakoudi I, Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 2008;9:1214-20
  • Lu S, Wang X, Lu Q, Stabilization of enzymes in silk films. Biomacromolecules 2009;10:1032-42
  • Lu Q, Wang X, Hu X, Stabilization and release of enzymes from silk films. Macromol Biosci 2010;10:359-68
  • Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54:139-48
  • Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 2010;62:1497-508
  • Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release 2011;150(2):128-41
  • Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329:528-31
  • Kaplan DL, Mello CM, Arcidiacono S, Silk. In: McGrath K, Kaplan D, editors, Protein-based materials. Birkhäuser, Boston; 1997
  • Matsumoto A, Chen J, Collette AL, Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B 2006;110:21630-8
  • Kim U-J, Park J, Li C, Structure and properties of silk hydrogels. Biomacromolecules 2004;5:786-92
  • Horan RL, Collette AL, Lee C, Yarn design for functional tissue engineering. J Biomech 2006;39:2232-40
  • Kim UJ, Park J, Kim HJ, Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005;26:2775-85
  • Kluge JA, Rosiello NC, Leisk GG, The consolidation behavior of silk hydrogels. J Mech Behav Biomed Mater 2010;3:278-89
  • Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 2000;69:169-84
  • Arai T, Freddi G, Innocenti R, Tsukada M. Biodegradation of Bombyx mori silk fibroin fibers and films. J Appl Polym Sci 2004;91:2383-90
  • Yang Y, Zhao Y, Gu Y, Degradation behaviors of nerve guidance conduits made up of silk fibroin in vitro and in vivo. Polym Degrad Stabil 2009;94:2213-20
  • Hofmann S, Wong Po Foo CT, Rossetti F, Silk fibroin as an organic polymer for controlled drug delivery. J Control Release 2006;111:219-27
  • Liu H, Fan H, Wang Y, The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials 2008;29:662-74
  • Chen JL, Yin Z, Shen WL, Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 2010;31:9438-51
  • Enomoto S, Sumi M, Kajimoto K, Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg 2010;51:155-64
  • Altman GH, Horan RL, Lu H, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002;23:4131-41
  • Choi H-M, Bide M, Phaneuf M, Antibiotic treatment of silk to produce novel infection-resistant biomaterials. Text Res J 2004;74:333-42
  • Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 2004;5:718-26
  • Hardy JG, Romer LM, Scheibel TR. Polymeric materials based on silk proteins. Polymer 2008;49:4309-27
  • Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006;2:6064-82
  • Park S-H, Gil ES, Shi H, Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 2010;31:6162-72
  • Makaya K, Terada S, Ohgo K, Asakura T. Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. J Biosci Bioeng 2009;108:68-75
  • Kim U-J, Park J, Li C, Structure and properties of silk hydrogels. Biomacromolecules 2004;5:786-92
  • Tsukada M, Freddi G, Minoura N, Allara G. Preparation and application of porous silk fibroin materials. J Appl Polym Sci 1994;54:507-14
  • Guziewicz N, Best A, Perez-Ramirez B, Kaplan DL. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 2011; 32:2642-5
  • Uebersax L, Mattotti M, Papaloizos M, Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials 2007;28:4449-60
  • Uebersax L, Merkle HP, Meinel L. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 2008;127:12-21
  • Zhang X, Reagan MR, Kaplan DL. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 2009;61:988-1006
  • Jin H-J, Chen J, Karageorgiou V, Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004;25:1039-47
  • Li C, Vepari C, Jin H-J, Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27:3115-24
  • Lu Q, Hu X, Wang X, Water-insoluble silk films with silk I structure. Acta Biomater 2010;6:1380-7
  • Jin H-J, Park J, Karageorgiou V, Water-insoluble silk films with reduced beta-sheet content. Adv Funct Mater 2005;15:1241-7
  • Demura M, Asakura T, Kuroo T. Immobilization of biocatalysts with bombyx mori silk fibroin by several kinds of physical treatment and its application to glucose sensors. Biosensors 1989;4:361-72
  • Miyairi S, Sugiura M, Fukui S. Immobilized beta glucosidase in fibroin membrane. Agric Biol Chem 1978;42:1661-7
  • Acharya C, Kumar V, Sen R, Kundu SC. Performance evaluation of a silk protein-based matrix for the enzymatic conversion of tyrosine to L-DOPA. Biotechnol J 2008;3:226-33
  • Bayraktar O, Malay O, Ozgarip Y, Batigun A. Silk fibroin as a novel coating material for controlled release of theophylline. Eur J Pharm Biopharm 2005;60(3):373-81
  • Chen J, Minoura N, Tanioka A. Transport of pharmaceuticals through silk fibroin membrane. Polymer 1994;35:2853-6
  • Hines DJ, Kaplan DL. Mechanisms of controlled release from silk fibroin films. Biomacromolecules 2011; 12:804-12
  • Liu X-Y, Zhang C-C, Xu W-L, Ouyang C. Controlled release of heparin from blended polyurethane and silk fibroin film. Mater Lett 2009;63:263-5
  • Kikuchi J, Mitsui Y, Asakura T, Spectroscopic investigation of tertiary fold of staphylococcal protein A to explore its engineering application. Biomaterials 1999;20:647-54
  • Zhang Y-Q, Shen W-D, Gu R-A, Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane. Anal Chim Acta 1998;369:123-8
  • Wu Y, Shen Q, Hu S. Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film. Anal Chim Acta 2006;558:179-86
  • Putthanarat S, Eby RK, Naik RR, Nonlinear optical transmission of silk/green fluorescent protein (GFP) films. Polymer 2004;45:8451-7
  • Wang X, Hu X, Daley A, Nanolayer biomaterial coatings of silk fibroin for controlled release. J Control Release 2007;121:190-9
  • Wang X, Zhang X, Castellot J, Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials 2008;29:894-903
  • Wang X, Wenk E, Hu X, Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007;28:4161-9
  • Gobin AS, Rhea R, Newman RA, Mathur AB. Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomed 2006;1:81-7
  • Mathur AB, Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine 2010;5:807-20
  • Nathwani BB, Jaffari M, Juriani AR, Fabrication and characterization of silk-fibroin-coated quantum dots. IEEE Trans Nanobioscience 2009;8:72-7
  • Chang S, Dai Y, Kang B, Fabrication of silk fibroin coated ZnSe:Mn2+ quantum dots under gamma-radiation and their magnetic properties. Solid State Commun 2009;149:1180-3
  • Wang X, Kim HJ, Xu P, Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir 2005;21:11335-41
  • Cheema SK, Gobin AS, Rhea R, Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int J Pharm 2007;341:221-9
  • Pritchard EM, Szybala C, Boison D, Kaplan DL. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release 2010;144:159-67
  • Katayama H, Issiki M, Yoshitomi H. Application of fibroin in controlled release tablets containing theophylline. Biol Pharm Bull 2000;10:1229-34
  • Pritchard EM, Valentin T, Boison D, Kaplan DL. Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release. Biomaterials 2011;32:909-18
  • Wang X, Wenk E, Matsumoto A, Silk microspheres for encapsulation and controlled release. J Control Release 2007;117:360-70
  • Hino T, Shimabayashi S, Nakai A. Silk microspheres prepared by spray-drying of an aqueous system. Pharm Pharmacol Commun 2000;6:335-9
  • Hino T, Tanimoto M, Shimabayashi S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J Colloid Interface Sci 2003;266:68-73
  • Yeo J-H, Lee K-G, Lee Y-W, Kim SY. Simple preparation and characteristics of silk fibroin microsphere. Eur Polym J 2003;39:1195-9
  • Cao Z, Chen X, Yao J, The preparation of regenerated silk fibroin microspheres. Soft Matter 2007;3:910-15
  • Bessa PC, Balmayor ER, Azevedo HS, Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J Tissue Eng Regen Med 2010;4:349-55
  • Bessa PC, Balmayor ER, Hartinger J, Silk fibroin microparticles as carries for delivery of human recombinant bone morphogenetic protein-2: in vitro and in vivo bioactivity. Tissue Eng C Methods 2010;16:937-45
  • Lammel AS, Hu X, Park S-H, Controlling silk fibroin particle features for drug delivery. Biomaterials 2010;31:4583-91
  • Imsombut T, Srisuwan Y, Srihanam P, Baimark Y. Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method. Powder Technol 2010;203:603-8
  • Wenk E, Wandrey AJ, Merkle HP, Meinel L. Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 2008;132:26-34
  • Wang X, Yucel T, Lu Q, Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 2010;31:1025-35
  • Kundu J, Chung YI, Kim YH, Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 2010;388:242-50
  • Wang X, Kluge JA, Leisk GG, Kaplan DL. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 2008;29:1054-64
  • Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys J 2009;97:2044-50
  • Hanawa T, Watanabe A, Tsuchiya T, New oral dosage form for elderly patients. II. release behavior of benfotiamine from silk fibroin gel. Chem Pharm Bull 1995;43:872-6
  • Fang J-Y, Chen J-P, Leu Y-L, Wang H-Y. Characterization and evaluation of silk protein hydrogels for drug delivery. Chem Pharm Bull 2006;54:156-62
  • Megeed Z, Haider M, Li D, In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 2004;94:433-45
  • Greish K, Araki K, Li D, Silk-elastinlike protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors. Biomacromolecules 2009;10:2183-8
  • Gustafson J, Greish K, Frandsen J, Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: from molecular definition to controlled gene expression. J Control Release 2009;140:256-61
  • Cappello J, Crissman JW, Crissman M, In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Control Release 1998;53:105-17
  • Dinerman AA, Cappello J, Ghandehari H, Hoa SW. Solute diffusion in genetically engineered silk–elastinlike protein polymer hydrogels. J Control Release 2002;82:277-87
  • Haider M, Megeed Z, Ghandehari H. Genetically engineered polymers: status and prospects for controlled release. J Control Release 2004;95:1-26
  • Gustafson JA, Ghandehari H. Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy. Adv Drug Deliv Rev 2010;62:1509-23
  • Chen J, Altman GH, Karageorgiou V, Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 2003;67:559-70
  • Meinel L, Karageorgiou V, Fajardo R, Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 2004;32:112-22
  • Wongpanit P, Ueda H, Tabata Y, Rujiravanit R. In vitro and in vivo release of basic fibroblast growth factor using a silk fibroin scaffold as delivery carrier. J Biomater Sci Polym Ed 2010;21:1403-19
  • Karageorgiou V, Meinel L, Hofmann S, Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 2004;71:528-37
  • Chen B, Yin C, Cheng Y, Using silk woven fabric as support for lipase immobilization: the effect of surface hydrophilicity/hydrophobicity on enzymatic activity and stability. Biomass Bioenerg 2010; In press
  • Wenk E, Murphy AR, Kaplan DL, The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 2010;31:1403-13
  • Wang X, Kaplan DL. Functionalization of silk fibroin with neutravidin and biotin. Macromol Biosci 2011;11:100-10
  • Vepari CP, Kaplan DL. Covalently immobilized enzyme gradients within three-dimensional porous scaffolds. Biotechnol Bioeng 2006;93:1130-7
  • Murphy AR, Kaplan DL. Biomedical applications of chemically-modified silk fibroin. J Mater Chem 2009;19:6443-50
  • Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci 2010;35:1093-115
  • Madduri S, Papaloizos M, Gander B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials 2010;31:2323-34
  • Wang X, Wenk E, Zhang X, Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 2009;134:81-90
  • Wilz A, Pritchard EM, Li T, Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 2008;29:3609-16
  • Szybala C, Pritchard EM, Lusardi TA, Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 2009;219:126-35
  • Wenk E, Meinel AJ, Wildy S, Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor. Biomaterials 2009;30:2571-81
  • Mandal BB, Mann JK, Kundu SC. Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur J Pharm Sci 2009;37:160-71
  • Mandal BB, Kapoor S, Kundu SC. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials 2009;14:2826-36
  • Kwon TK, Kim JC. Complex coacervation-controlled release from monoolein cubic phase containing silk fibroin and alginate. Biomacromolecules 2010; 12:466-71
  • Mandal BB, Kundu SC. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Biomaterials 2009;30:5170-7
  • Jiang X, Zhao J, Wang S, Mandibular repair in rats with premineralized silk scaffolds and BMP-2 modified bMSCs. Biomaterials 2009;30:4522-32
  • Uebersax L, Fedele DE, Schumacher C, The support of adenosine release from adenosine kinase deficient ES cells by silk substrates. Biomaterials 2006;27:4599-607

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.