271
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Drug delivery systems in the treatment of African trypanosomiasis infections

, &
Pages 735-747 | Published online: 18 May 2011

Bibliography

  • WHO. The world health report. World Health Organization, Geneva; 1999
  • Brun R, Blum J, Chappuis F, Human African trypanosomiasis. Lancet 2009;375(9709):148-59
  • Barrett MP, Boykin DW, Brun R, Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol 2007;152(8):1155-71
  • Burchmore RJ, Ogbunude PO, Enanga B, Chemotherapy of human African trypanosomiasis. Curr Pharm Des 2002;8(4):256-67
  • Barrett MP. Problems for the chemotherapy of human African trypanosomiasis. Curr Opin Infect Dis 2000;13(6):647-51
  • Torreele E, Bourdin Trunz B, Tweats D, Fexinidazole–a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis 2006;4(12):e923
  • Yun O, Priotto G, Tong J, NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 2010;4(5):e720
  • Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 2007;59(6):505-21
  • Miller EN, Allan LM, Turner MJ. Topological analysis of antigenic determinants on a variant surface glycoprotein of Trypanosoma brucei. Mol Biochem Parasitol 1984;13(1):67-81
  • Jennings FW, Gray GD. Relapsed parasitaemia following chemotherapy of chronic T. brucei infections in mice and its relation to cerebral trypanosomes. Contrib Microbiol Immunol 1983;7:147-54
  • Jennings FW, Hunter CA, Kennedy PG, Chemotherapy of Trypanosoma brucei infection of the central nervous system: the use of a rapid chemotherapeutic regimen and the development of post-treatment encephalopathies. Trans R Soc Trop Med Hyg 1993;87(2):224-6
  • Kinabo LD. Pharmacology of existing drugs for animal trypanosomiasis. Acta Trop 1993;54(3-4):169-83
  • Williamson J. Chemotherapy and chemoprophylaxis of african trypanosomiasis. Exp Parasitol 1962;12:274-322
  • Pepin J, Milord F, Khonde A, Gambiense trypanosomiasis: frequency of, and risk factors for, failure of melarsoprol therapy. Trans R Soc Trop Med Hyg 1994;88(4):447-52
  • Burri C. Chemotherapy against human African trypanosomiasis: is there a road to success? Parasitology 2010;137(14):1987-94
  • Blum J, Nkunku S, Burri C. Clinical description of encephalopathic syndromes and risk factors for their occurrence and outcome during melarsoprol treatment of human African trypanosomiasis. Trop Med Int Health 2001;6(5):390-400
  • Carter NS, Berger BJ, Fairlamb AH. Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. J Biol Chem 1995;270(47):28153-7
  • Senior JC. Fate and behaviour of liposomes in vivo: a review of controlling factors. CRC Crit Rev Ther Drug Carrier Syst 1991;3:123-93
  • Alving CR. Liposomes as drug carriers in leishmaniasis and malaria. Parasitol Today 1986;2(4):101-7
  • Campbell PI. Toxicity of some charged lipids used in liposome preparations. Cytobios 1983;37(145):21-6
  • Szoka FC Jr, Milholland D, Barza M. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob Agents Chemother 1987;31(3):421-9
  • Kuboki N, Yokoyama N, Kojima N, Efficacy of dipalmitoylphosphatidylcholine liposome against African trypanosomes. J Parasitol 2006;92(2):389-93
  • Souto-Padron T, de Carvalho TU, Chiari E, Further studies on the cell surface charge of Trypanosoma cruzi. Acta Trop 1984;41(3):215-25
  • Tachibana H, Yoshihara E, Kaneda Y, In vitro lysis of the bloodstream forms of Trypanosoma brucei gambiense by stearylamine-bearing liposomes. Antimicrob Agents Chemother 1988;32(7):966-70
  • Yoshihara E, Tachibana H, Nakae T. Trypanocidal activity of the stearylamine-bearing liposome in vitro. Life Sci 1987;40(22):2153-9
  • Gruenberg J, Coral D, Knupfer AL, Interactions of liposomes with Trypanosoma brucei plasma membrane. Biochem Biophys Res Commun 1979;88(3):1173-9
  • Yongsheng Y, Yongchun O, Chengmai R, Trypanocidal value of liposomal diminazene in experimental Trypanosoma brucei evansi infection in mice. Vet Parasitol 1996;61(3-4):349-52
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307(1):93-102
  • Klibanov AL, Maruyama K, Torchilin VP, Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268(1):235-7
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003;55(3):403-19
  • Gref R, Luck M, Quellec P, ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000;18(3-4):301-13
  • Alexis F, Pridgen E, Molnar LK, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5(4):505-15
  • Tsivgoulis GM, Sotiropoulos DN, Ioannou PV. 1,2-Dihydroxypropyl-3-arsonic acid: a key intermediate for arsonolipids. Phosphorus, Sulfur and Silicon and the Related Elements 1991;57(3-4):189-93
  • Timotheatou D, Ioannou PV, Scozzafava A, Carbonic anhydrase interaction with lipothioars enites: a novel class of isozymes I and II inhibitors. Met Based Drugs 1996;3(6):263-8
  • Antimisiaris SG, Ioannou PV, Loiseau PM. In-vitro antileishmanial and trypanocidal activities of arsonoliposomes and preliminary in-vivo distribution in BALB/c mice. J Pharm Pharmacol 2003;55(5):647-52
  • Zagana P, Klepetsanis P, Ioannou PV, Trypanocidal activity of arsonoliposomes: effect of vesicle lipid composition. Biomed Pharmacother 2007;61(8):499-504
  • Zagana P, Haikou M, Klepetsanis P, In vivo distribution of arsonoliposomes: effect of vesicle lipid composition. Int J Pharm 2008;347(1-2):86-92
  • Piperoudi S, Ioannou PV, Frederik P, Arsonoliposomes: effect of lipid composition on their stability and morphology. J Liposome Res 2005;15(3-4):187-97
  • Piperoudi S, Fatouros D, Ioannou PV, Incorporation of PEG-lipids in arsonoliposomes results in formation of highly stable arsenic-containing vesicles. Chem Phys Lipids 2006;139(2):96-106
  • Shafer SH, Williams CL. Non-small and small cell lung carcinoma cell lines exhibit cell type-specific sensitivity to edelfosine-induced cell death and different cell line-specific responses to edelfosine treatment. Int J Oncol 2003;23(2):389-400
  • Na HK, Chang CC, Trosko JE. Growth suppression of a tumorigenic rat liver cell line by the anticancer agent, ET-18-O-CH(3), is mediated by inhibition of cytokinesis. Cancer Chemother Pharmacol 2003;51(3):209-15
  • Lux H, Heise N, Klenner T, Ether–lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether–lipid analogues in Leishmania. Mol Biochem Parasitol 2000;111(1):1-14
  • Croft SL, Coombs GH. Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 2003;19(11):502-8
  • Croft SL, Seifert K, Duchene M. Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol 2003;126(2):165-72
  • Lux H, Hart DT, Parker PJ, Klenner T. Ether lipid metabolism, GPI anchor biosynthesis, and signal transduction are putative targets for anti-leishmanial alkyl phospholipid analogues. Adv Exp Med Biol 1996;416:201-11
  • Papagiannaros A, Bories C, Demetzos C, Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations. Biomed Pharmacother 2005;59(10):545-50
  • Atsriku C, Watson DG, Tettey JN, Determination of diminazene aceturate in pharmaceutical formulations by HPLC and identification of related substances by LC/MS. J Pharm Biomed Anal 2002;30(4):979-86
  • Thunemann AF, Schutt D, Sachse R, Complexes of poly(ethylene oxide)-block-poly(L-glutamate) and diminazene. Langmuir 2006;22(5):2323-8
  • Soliman GM, Winnik FM. Enhancement of hydrophilic drug loading and release characteristics through micellization with new carboxymethyldextran-PEG block copolymers of tunable charge density. Int J Pharm 2008;356(1-2):248-58
  • Govender T, Stolnik S, Xiong C, Drug-polyionic block copolymer interactions for micelle formation: physicochemical characterisation. J Control Release 2001;75(3):249-58
  • Prompruk K, Govender T, Zhang S, Synthesis of a novel PEG-block-poly(aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier. Int J Pharm 2005;297(1-2):242-53
  • Dou H, Jiang M. Fabrication, characterization and drug loading of pH-dependent multi-morpho- logical nanoparticles based on cellulose. Polym Int 2007;56(7):1206-12
  • Gibaud S, Gaia A, Astier A. Slow-release melarsoprol microparticles. Int J Pharm 2002;243(1-2):161-6
  • Ben Zirar S, Astier A, Muchow M, Comparison of nanosuspensions and hydroxypropyl-beta-cyclodextrin complex of melarsoprol: pharmacokinetics and tissue distribution in mice. Eur J Pharm Biopharm 2008;70(2):649-56
  • Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47(1):3-19
  • Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 1995;41:2-13
  • ISO/TS 27687 IOfSTS. Nanotechnologies – terminology and definitions for nanoobjects- nanoparticle, nanofibre and nanoplate. International Organization for Standardisation 2008
  • Brandenberger C, Rothen-Rutishauser B, Blank F, Particles induce apical plasma membrane enlargement in epithelial lung cell line depending on particle surface area dose. Respir Res 2009;10(1):22
  • Leroueil-Le Verger M, Fluckiger L, Kim YI, Preparation and characterization of nanoparticles containing an antihypertensive agent. Eur J Pharm Biopharm 1998;46(2):137-43
  • Kim SY, Shin IG, Lee YM. Preparation and characterization of biodegradable nanospheres composed of methoxy poly(ethylene glycol) and DL-lactide block copolymer as novel drug carriers. J Control Release 1998;56(1-3):197-208
  • Fernandez-Urrusuno R, Fattal E, Rodrigues JM, Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. J Biomed Mater Res 1996;31(3):401-8
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70(1-2):1-20
  • Kreuter J, Shamenkov D, Petrov V, Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002;10(4):317-25
  • Jallouli Y, Paillard A, Chang J, Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm 2007;344(1-2):103-9
  • Chang J, Jallouli Y, Barras A, Chapter 1 - Drug delivery to the brain using colloidal carriers. Prog Brain Res 2009;180:2-17
  • Chang J, Jallouli Y, Kroubi M, Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 2009;379(2):285-92
  • Olbrich C, Gessner A, Schroder W, Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release 2004;96(3):425-35
  • Olbrich C, Gessner A, Kayser O, Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002;10(5):387-96
  • Gessner A, Olbrich C, Schroder W, The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 2001;214(1-2):87-91
  • Loiseau PM, Imbertie L, Bories C, Design and antileishmanial activity of amphotericin B-loaded stable ionic amphiphile biovector formulations. Antimicrob Agents Chemother 2002;46(5):1597-601
  • Paillard A, Passirani C, Saulnier P, Positively-charged, porous, polysaccharide nanoparticles loaded with anionic molecules behave as ‘stealth’ cationic nanocarriers. Pharm Res 2010;27(1):126-33
  • Kroubi M, Dauloued S, Karembe H, Development of a nanoparticulate formulation of diminazene to treat African Trypanosomiasis. Nanotechnology 2010;21(50):505102-10
  • Durand R, Paul M, Rivollet D, Activity of pentamidine-loaded poly (D,L-lactide) nanoparticles against Leishmania infantum in a murine model. Parasite 1997;4(4):331-6
  • Durand R, Paul M, Rivollet D, Activity of pentamidine-loaded methacrylate nanoparticles against Leishmania infantum in a mouse model. Int J Parasitol 1997;27(11):1361-7
  • Fusai T, Boulard Y, Durand R, Ultrastructural changes in parasites induced by nanoparticle-bound pentamidine in a Leishmania major/mouse model. Parasite 1997;4(2):133-9
  • Fusai T, Deniau M, Durand R, Action of pentamidine-bound nanoparticles against Leishmania on an in vivo model. Parasite 1994;1(4):319-24
  • Paul M, Durand R, Boulard Y, Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 1998;5(6):481-90
  • Kulkarni RK, Moore EG, Hegyeli AF, Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 1971;5(3):169-81
  • Bazile DV, Ropert C, Huve P, Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 1992;13(15):1093-102
  • Makino K, Arakawa M, Kondo T. Preparation and in vitro degradation properties of polylactide microcapsules. Chem Pharm Bull (Tokyo) 1985;33(3):1195-201
  • Fricker G, Flaig RM. Bdellosomes US 2004062815;2004
  • Flaig RM, Rosenkranz V, Wink M, Ktenate nanoparticles (bdellosomes): a novel strategy for delivering drugs to parasites or tumours. STP Pharm Sci 2005;15(1):59-63
  • De Deken R, Geerts S, Kageruka P, Chemoprophylaxis of trypanosomiasis, due to Trypanosoma (Nannomonas) congolense, in rabbits using a slow release device containing homidium bromide. Ann Soc Belg Med Trop 1989;69(4):291-6
  • Geerts S, De Deken R, Kageruka P, Evaluation of the efficacy of a slow release device containing homidium bromide in rabbits infected with Trypanosoma congolense. Vet Parasitol 1993;50(1-2):15-21
  • Kageruka P, Kabore H, Marcotty T, Comparative evaluation of the prophylactic effect of slow release devices containing homidium bromide and isometamidium on Trypanosoma congolense in rabbits. Vet Parasitol 1996;63(3-4):179-85
  • Geerts S, Kageruka P, De Deken R, Prophylactic effects of isometamidium- and ethidium-sustained release devices against Trypanosoma congolense in cattle. Acta Trop 1997;65(1):23-31
  • Geerts S, Diarra B, Eisler MC, Extension of the prophylactic effect of isometamidium against trypanosome infections in cattle using a biodegradable copolymer. Acta Trop 1999;73(1):49-58
  • Lemmouchi Y, Schacht E. Preparation and in vitro evaluation of biodegradable poly(epsilon-caprolactone-co-D,L lactide) (X-Y) devices containing trypanocidal drugs. J Control Release 1997;45:227-33
  • Lemmouchi Y, Schacht E, Lootens C. In vitro release of trypanocidal drugs from biodegradable implants based on poly(epsilon-caprolactone) and poly(D,L-lactide). J Control Release 1998;55(1):79-85
  • Lemmouchi Y, Schacht E, Kageruka P, Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies. Biomaterials 1998;19(20):1827-37
  • Bray PG, Barrett MP, Ward SA, Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends Parasitol 2003;19(5):232-9
  • de Koning HP, Anderson LF, Stewart M, The trypanocide diminazene aceturate is accumulated predominantly through the TbAT1 purine transporter: additional insights on diamidine resistance in african trypanosomes. Antimicrob Agents Chemother 2004;48(5):1515-19
  • Karvonen E, Kauppinen L, Partanen T, Irreversible inhibition of putrescine-stimulated S-adenosyl-L-methionine decarboxylase by berenil and pentamidine. Biochem J 1985;231(1):165-9
  • Balana-Fouce R, Garzon Pulido T, Ordonez-Escudero D, Inhibition of diamine oxidase and S-adenosylmethionine decarboxylase by diminacene aceturate (berenil). Biochem Pharmacol 1986;35(9):1597-600
  • Reinert KE. DNA multimode interaction with berenil and pentamidine; double helix stiffening, unbending and bending. J Biomol Struct Dyn 1999;17(2):311-31
  • Ainanshe OA, Jennings FW, Holmes PH. Isolation of drug-resistant strains of Trypanosoma congolense from the lower Shabelle region of southern Somalia. Trop Anim Health Prod 1992;24(2):65-73
  • Sinyangwe L, Delespaux V, Brandt J, Trypanocidal drug resistance in eastern province of Zambia. Vet Parasitol 2004;119(2-3):125-35
  • Lun ZR, Min ZP, Huang D, Cymelarsan in the treatment of buffaloes naturally infected with Trypanosoma evansi in south China. Acta Trop 1991;49(3):233-6
  • Boid R, Jones TW, Payne RC. Malic enzyme type VII isoenzyme as an indicator of suramin resistance in Trypanosoma evansi. Exp Parasitol 1989;69(4):317-23
  • Ndoutamia G, Moloo SK, Murphy NB, Derivation and characterization of a quinapyramine-resistant clone of Trypanosoma congolense. Antimicrob Agents Chemother 1993;37(5):1163-6
  • Hawking F, Sen AB. The trypanocidal action of homidium, quinapyramine and suramin. Br J Pharmacol Chemother 1960;15:567-70
  • Keiser J, Burri C. Physico-chemical properties of the trypanocidal drug melarsoprol. Acta Trop 2000;74(1):101-4
  • de Melo NF, Grillo R, Rosa AH, Interaction between nitroheterocyclic compounds with beta-cyclodextrins: phase solubility and HPLC studies. J Pharm Biomed Anal 2008;47(4-5):865-9
  • Paulino M, Iribarne F, Dubin M, The chemotherapy of Chagas' disease: an overview. Mini Rev Med Chem 2005;5(5):499-519
  • Pepin J, Milord F. The treatment of human African trypanosomiasis. Adv Parasitol 1994;33:1-47
  • Wang CC. Molecular mechanisms and therapeutic approaches to the treatment of African trypanosomiasis. Annu Rev Pharmacol Toxicol 1995;35:93-127
  • Vansterkenburg EL, Coppens I, Wilting J, The uptake of the trypanocidal drug suramin in combination with low-density lipoproteins by Trypanosoma brucei and its possible mode of action. Acta Trop 1993;54(3-4):237-50
  • Bacchi CJ, Nathan HC, Hutner SH, Polyamine metabolism: a potential therapeutic target in trypanosomes. Science 1980;210(4467):332-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.