179
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Delivery approaches for angiogenic growth factors in the treatment of ischemic conditions

Pages 873-890 | Published online: 06 Jun 2011

Bibliography

  • Lloyd-Jones D, Adams RJ, Brown TM, Executive summary: heart disease and stroke statistics-2010 update a report from the American Heart Association. Circulation 2010;121(7):948-54
  • Choi D, Hwang KC, Lee KY, Ischemic heart diseases: current treatments and future. J Control Release 2009;140(3):194-202
  • Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J Vasc Surg 2010;51(1):230-41
  • Heart disease and stroke statistics – 2006 update 2006. Circulation 2006;113:e85–e151
  • Sneider EB, Nowicki PT, Messina LM. Regenerative medicine in the treatment of peripheral arterial disease. J Cell Biochem 2009;108(4):753-61
  • Messina LM, Brevetti LS, Chang DS, Therapeutic angiogenesis for critical limb ischemia: invited commentary. J Control Release 2002;78(1-3):285-94
  • Attanasio S, Snell J. Therapeutic angiogenesis in the management of critical limb ischemia current concepts and review. Cardiol Rev 2009;17(3):115-20
  • Rissanen TT, Vajanto I, Yla-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb – on the way to the clinic. Eur J Clin Invest 2001;31(8):651-66
  • Gotlieb AI. Blood vessels. In: Rubin E, Gorstein F, Rubin R, Schwarting R, Strayer D, editors, Rubin's pathology. Lippincott, Williams, and Wilkins, New York; 2005. p. 473-519
  • Lu C, Soad AK. Role of pericytes in angiogenesis. In: Teicher BA, Ellis LM, editors, Antiangiogenic agents in cancer therapy. 2nd edition. Humana Press, Totawa, NJ; 2008. p. 117-32
  • Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002;282(5):C947-70
  • Hughes S, Yang HJ, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 2000;41(5):1217-28
  • Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999;5(12):1359-64
  • Milkiewicz M, Ispanovic E, Doyle JL, Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 2006;38(3):333-57
  • Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res 2005;65(3):649-55
  • Atluri P, Woo YJ. Pro-angiogenic cytokines as cardiovascular therapeutics – Assessing the potential. Biodrugs 2008;22(4):209-22
  • Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18(1):4-25
  • Lazarous DF, Shou M, Scheinowitz M, Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 1996;94(5):1074-82
  • Zhu X, Komiya H, Chirino A, 3-Dimensional structures of acidic and basic fibroblast growth-factors. Science 1991;251(4989):90-3
  • Edelman ER, Nugent MA, Karnovsky MJ. Perivascular and intravenous administration of basic fibroblast growth-factor – Vascular and solid organ deposition. Proc Natl Acad Sci USA 1993;90(4):1513-17
  • Kawaida K, Matsumoto K, Shimazu H, Hepatocyte growth-factor prevents acute-renal-failure and accelerates renal regeneration in mice. Proc Natl Acad Sci USA 1994;91(10):4357-61
  • Antoniades HN, Scher CD, Stiles CD. Purification of human platelet-derived growth-factor. Proc Natl Acad Sci USA 1979;76(4):1809-13
  • Bowen-Pope DF, Malpass TW, Foster DM, Platelet-derived growth-factor in vivo - levels, activity, and rate of clearance. Blood 1984;64(2):458-69
  • Heil M, Eitenmuller I, Schmitz-Rixen T, Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 2006;10(1):45-55
  • Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 2007;102(4):840-7
  • Bhang SH, Cho SW, Lim JM, Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs. Stem Cells 2009;27(8):1976-86
  • Germani A, Di Campli C, Pompilio G, Regenerative therapy in peripheral artery disease. Cardiovasc Ther 2009;27(4):289-304
  • Cao YH, Hong A, Schulten H, Update on therapeutic neovascularization. Cardiovasc Res 2005;65(3):639-48
  • Lee J, Terracciano CM. Cell therapy for cardiac repair. Br Med Bull 2010;94(1):65-80
  • Van Huyen JPD, Smadja DM, Bruneval P, Bone marrow-derived mononuclear cell therapy induces distal angiogenesis after local injection in critical leg ischemia. Mod Pathol 2008;21(7):837-46
  • Cleland JL, Duenas ET, Park A, Development of poly-(D,L-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 2001;72(1-3):13-24
  • Post MJ, Laham R, Sellke FW, Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001;49(3):522-31
  • Epstein SE, Fuchs S, Zhou YF, Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 2001;49(3):532-42
  • Yla-Herttuala S, Alitalo K. Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 2003;9(6):694-701
  • Post MJ, Simons M. Gene therapy versus protein-based therapy: a matter of pharmacokinetics. Drug Discov Today 2001;6(15):769-70
  • Hammond HK, McKirnan MD. Angiogenic gene therapy for heart disease: a review of animal studies and clinical trials. Cardiovasc Res 2001;49(3):561-67
  • Schwendeman SP, Costantino HR, Gupta RK, Peptide, protein, and vaccine delivery from implantable polymeric systems. In: Park K, editor, Controlled drug delivery: challenges and strategies. Washington, D.C., ACS; 1997
  • Lee KY, Peters MC, Mooney DJ. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release 2003;87(1-3):49-56
  • Sabel MS, Skitzki J, Stoolman L, Intratumoral IL-12 and TNF-alpha-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity. Ann Surg Oncol 2004;11(2):147-56
  • Mullerad J, Cohen S, Benharroch D, Local delivery of IL-1 alpha polymeric microspheres for the immunotherapy of an experimental fibrosarcoma. Cancer Invest 2003;21(5):720-8
  • Egilmez NK, Jong YS, Sabel MS, In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res 2000;60(14):3832-7
  • Takada S, Uda Y, Toguchi H, Preparation and characterization of copoly(dl-lactic/glycolic acid) microparticles for sustained release of thyrotropin releasing hormone by double nozzle spray drying method. J Control Release 1994;32:79-85
  • Sah H, Chien Y. Degradibility and antigen-release characteristics of polyester microspheres prepared from polymer blends. J Appl Polym Sci 1995;58:197-206
  • Mehta RC, Thanoo BC, Deluca PP. Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide). J Control Release 1996;41:249-57
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 2000;17(10):1159-67
  • Gopferich A, Gref R, Minamitake Y, Drug delivery from bioerodible polymers: systemic and intravenous administration. In: Cleland JL, Langer R, editors, Formulation and delivery of proteins and peptides. Washington, ACS; 1994
  • Mader K, Gallez B, Liu KJ, Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials 1996;17(4):457-61
  • Fu K, Pack DW, Klibanov AM, Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 2000;17(1):100-6
  • Shenderova A, Burke TG, Schwendeman SP. Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm Res 1997;14(10):1406-14
  • Chen L, Apte RN, Cohen S. Characterization of PLGA microspheres for the controlled delivery of IL-1alpha for tumor immunotherapy. J Control Release 1997;43(2-3):261-72
  • Yang J, Cleland JL. Factors affecting the in vitro release of recombinant human interferon-gamma from PLGA microspheres. J Pharm Sci 1997;86(8):908-14
  • Hora MS, Rana RK, Nunberg JH, Controlled release of interleukin-2 from biodegradable microspheres. Biotechnology 1990;8:755-8
  • Park TG, Lu W, Crotts G. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D,L-lactic acid-co-glycolic acid) microspheres. J Control Release 1995;33(2):211-22
  • Johnson RE, Lanaski LA, Gupta V, Stability of atriopeptin-Iii in poly(D,L-Lactide-co-glycolide) microspheres. J Control Release 1991;17(1):61-7
  • Takahata H, Lavelle EC, Coombes AGA, The distribution of protein associated with poly(DL-lactide co-glycolide) microparticles and its degradation in simulated body fluids. J Control Release 1998;50(1-3):237-46
  • Zambaux MF, Bonneaux F, Gref R, Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 1999;60:179-88
  • Tabata Y, Gutta S, Langer R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm Res 1993;10(4):487-96
  • Aubert-Pouessel A, Bibby DC, Venier-Julienne M-C, A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm Res 2002;19(7):1046-51
  • Ekholm M, Hietanen J, Lindqvist C, Histological study of tissue reactions to e-caprolactone-lactide copolymer in paste form. Biomaterials 1999;20:1257-62
  • Kim T, Burgess D. Pharmacokinetic characterization of 14C-vascular endothelial growth factor controlled release microspheres using a rat model. J Pharm Pharmacol 2002;54:897-905
  • Rocha FG, Sundback CA, Krebs NJ, The efffect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials 2008;29(19):2884-90
  • Zhu GZ, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat Biotechnol 2000;18(1):52-7
  • Ding AG, Schwendeman SP. Acidic microclimate pH distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm Res 2008;25(9):2041-52
  • Jiang W, Schwendeman SP. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D,L-lactide) and poly(ethylene glycol) microsphere beads. Pharm Res 2001;18(6):878-85
  • Lavelle EC, Yeh MK, Coombes AGA, The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Vaccine 1999;17(6):512-29
  • Li L, Schwendeman SP. Mapping neutral microclimate pH in PLGA microspheres. J Control Release 2005;101:163-73
  • King TW, Patrick CW. Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/poly(ethylene glycol) microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J Biomed Mater Res 2000;51(3):383-90
  • Zhu XH, Wang CH, Tong YW. In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 2009;89A(2):411-23
  • Wu CKA, Pettit AR, Toulson S, Responses in vivo to purified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) implanted in a murine tibial defect model. J Biomed Mater Res A 2009;91A(3):845-54
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475-90
  • Domb AJ, Kost J, Wiseman D. Handbook of biodegradable polymers. Harwood Academic Publishers, Amsterdam; 1997
  • Gu F, Neufeld R, Amsden B. Sustained release of bioactive therapeutic proteins from a biodegradable elastomeric device. J Control Release 2007;117:80-9
  • Amsden B. A model for osmotic pressure driven release from cylindrical rubbery polymer matrices. J Control Release 2003;93:249-58
  • Gu F, Neufeld R, Amsden B. Maintenance of vascular endothelial growth factor and potentially other therapeutic proteins bioactivity during a photo-initiated free radical cross-linking reaction forming biodegradable elastomers. Eur J Pharm Biopharm 2007;66(1):21-7
  • Gu F, Neufeld RJ, Amsden B. Osmotic driven release kinetics of bioactive therapeutic proteins from a biodegradable elastomer are linear, constant, similar and adjustable. Pharm Res 2006;23(4):782-9
  • Chapanian R, Amsden B. Osmotically driven protein release from photo-cross-linked elastomers of poly(trimethylene carbonate) and poly(trimethylene carbonate-co-D,L-lactide). Eur J Pharm Biopharm 2009;74:172-83
  • Acemoglu M. Chemistry of polymer biodegradation and implications on parenteral drug delivery. Int J Pharm 2004;277(1-2):133-9
  • Cai J, Zhu KJ, Yang SL. Surface biodegradable copolymers - poly(D,L-lactide-co-1-methyl-1,3-trimethylene carbonate) and poly(D,L-lactide-co-2,2-dimethyl-1,3-trimethylene carbonate): preparation, characterization and biodegradation characteristics in vivo. Polymer 1998;39(18):4409-15
  • Pego AP, Van Luyn MJA, Brouwer LA, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: degradation and tissue response. J Biomed Mater Res A 2003; 67A(3):1044-54
  • Pego AP, Poot AA, Grijpma DW, Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. J Biomater Sci Polym Ed 2001;12(1):35-53
  • Zhu KJ, Hendren RW, Jensen K, Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 1991;24:1736-40
  • Chapanian R, Tse MY, Pang SC, The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate based photocrosslinkable elastomers. Biomaterials 2009;30(3):295-306
  • Chapanian R, Amsden B. Combined and sequential delivery of bioactive VEGF165 and HGF from Poly(trimethylene carbonate) based photo-cross-linked elastomers. J Control Release 2010;143:53-63
  • Anderson JM. Biological responses to materials. Annu Rev Mater Res 2001;31:81-110
  • Sokolsky-Papkov M, Agashi K, Olaye A, Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007;59(4-5):187-206
  • Ziegler J, Mayr-Wohlfart U, Kessler S, Adsorption and release properties of growth factors from biodegradable implants. J Biomed Mater Res 2002;59(3):422-8
  • Yoon JJ, Chung HJ, Lee HJ, Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J Biomed Mater Res A 2006;79A(4):934-42
  • Sohier J, Vlugt TJH, Cabrol N, Dual release of proteins from porous polymeric scaffolds. J Control Release 2006;111(1-2):95-106
  • Perets A, Baruch Y, Weisbuch F, Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 2003;65A(4):489-97
  • Wei GB, Jin QM, Giannobile WV, Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 2006;112(1):103-10
  • Wei GB, Jin QM, Giannobile WV, The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28(12):2087-96
  • Murphy WL, Peters MC, Kohn DH, Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2000;21(24):2521-7
  • Hile DD, Pishko MV. Solvent-free protein encapsulation within biodegradable polymer foams. Drug Deliv 2004;11(5):287-93
  • Guan JJ, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 2007;120:70-8
  • Burke PA. Controlled release protein therapeutics: effects of process and formulation on stability. In: Wise DA, editor, Handbook of pharmaceutical contolled release technology. Marcel Dekker, Inc., New York; 2000. p. 661-92
  • Sheridan M, Shea L, Peters MC, Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 2000;64:91-102
  • Sun QH, Chen RR, Shen YC, Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 2005;22(7):1110-16
  • Ennett AB, Kaigler D, Mooney DJ. Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res A 2006;79A(1):176-84
  • Smith MK, Riddle KW, Mooney DJ. Delivery of hepatotrophic factors fails to enhance longer-term survival of subcutaneously transplanted hepatocytes. Tissue Eng 2006;12(2):335-44
  • Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomater Sci Polym Ed 2002;13(4):391-406
  • Liu LS, Ng CK, Thompson AY, Hyaluronate-heparin conjugate gels for the delivery of basic fibroblast growth factor (FGF-2). J Biomed Mater Res 2002;62(1):128-35
  • Cai SS, Liu YC, Shu XZ, Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 2005;26(30):6054-67
  • Hosack LW, Firpo MA, Scott JA, Microvascular maturity elicited in tissue treated with cytokine-loaded hyaluronan-based hydrogels. Biomaterials 2008;29(15):2336-47
  • Elia R, Fuegy PW, VanDelden A, Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 2010;31(17):4630-8
  • Ashikari-Hada S, Habuchi H, Kariya Y, Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 2004;279(13):12346-54
  • Yayon A, Klagsbrun M, Esko JD, Cell-surface, heparin-like molecules are required for binding of basic fibroblast growth-factor to its high-affinity receptor. Cell 1991;64(4):841-8
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669-76
  • Bouhadir KH, Lee KY, Alsberg E, Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Progr 2001;17(5):945-50
  • Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 2001;25(7):558-65
  • Gu F, Amsden B, Neufeld R. Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 2004;96(3):463-72
  • Peters MC, Isenberg BC, Rowley JA, Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 1998;9(12):1267-78
  • Jay SM, Shepherd BR, Andrejecsk JW, Dual delivery of VEGF and MCP-1 to support endothelial cell transplantation for therapeutic vascularization. Biomaterials 2010;31(11):3054-62
  • Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 2009;134(1):26-34
  • Amsden B. Solute diffusion in hydrogels. An examination of the retardation effect. Polym Gels Netw 1998;6:13-43
  • Silva EA, Mooney DJ. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 2010;31(6):1235-41
  • Ruvinov E, Leor J, Cohen S. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 2010;31(16):4573-82
  • Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 1997;34(1):21-8
  • Ueno H, Yamada H, Tanaka I, Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 1999;20(15):1407-14
  • Bae K, Jun EJ, Lee SM, Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clin Oral Invest 2006;10(2):102-7
  • Ono K, Saito Y, Yura H, Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 2000;49:289-95
  • Ishihara M, Obara K, Ishizuka T, Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res A 2003;64A(3):551-9
  • Yeo Y, Geng WL, Ito T, Photocrosslinkable hydrogel for myocyte cell culture and injection. J Biomed Mater Res B 2007;81B(2):312-22
  • Fujita M, Ishihara M, Morimoto Y, Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 2005;126(1):27-33
  • Nillesen STM, Geutjes PJ, Wismans R, Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 2007;28(6):1123-31
  • Marui A, Kanematsu A, Yamahara K, Simultaneous application of basic fibroblast growth factor and hcpatocyte growth factor to enhance the blood vessels formation. J Vasc Surg 2005;41(1):82-90
  • Kanematsu A, Yamamoto S, Ozeki M, Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004;25(18):4513-20
  • Ozeki M, Tabata Y. Interaction of hepatocyte growth factor with gelatin as the carrier material. J Biomater Sci Polym Ed 2006;17:163-75
  • Kipshidze N, Chekanov V, Chawla P, Angiogenesis in a patient with ischemic limb – Induced by intramuscular injection of vascular endothelial growth factor and fibrin platform. Tex Heart I J 2000;27(2):196-200
  • Zisch AH, Schenk U, Schense JC, Covalently conjugated VEGF-fibrin matrices for endothelialization. J Control Release 2001;72(1-3):101-13
  • Ehrbar M, Zeisberger SM, Raeber GP, The role of actively released fibrin-conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 2008;29(11):1720-9
  • Yang HS, Bhang SH, Hwang JW, Delivery of basic fibroblast growth factor using heparin-conjugated fibrin for therapeutic angiogenesis. Tissue Eng A 2010;16(6):2113-19
  • Young S, Wong M, Tabata Y, Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005;109(1-3):256-74
  • Tabata Y, Nagano A, Ikada Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 1999;5(2):127-38
  • Marui A, Kanematsu A, Yamahara K, Simultaneous application of basic fibroblast growth factor and hcpatocyte growth factor to enhance the blood vessels formation. J Vasc Surg 2005;41(1):82-90
  • Patel ZS, Ueda H, Yamamoto M, In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res 2008;25(10):2370-8
  • Tae G, Scatena M, Stayton PS, PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomater Sci Polym Ed 2006;17(1-2):187-97
  • Zieris A, Prokoph S, Levental KR, FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials 2010;31(31):7985-94
  • Zisch AH, Lutolf MP, Hubbell JA. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 2003;12(6):295-310
  • Phelps EA, Landazuri N, Thule PM, Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 2010;107(8):3323-8
  • Golub JS, Kim YT, Duvall CL, Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 2010;298(6):H1959-65
  • d'Angelo I, Garcia-Fuentes M, Parajo Y, Nanoparticles based on PLGA: poloxamer blends for the delivery of proangiogenic growth factors. Mol Pharm 2010;7(5):1724-33
  • Chung YI, Kim SK, Lee YK, Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J Control Release 2010;143(3):282-9
  • Huang M, Vitharana SN, Peek LJ, Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules 2007;8(5):1607-14
  • Parajo Y, d'Angelo I, Welle A, Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv 2010;17(8):596-604
  • Amsden BG. Liquid, injectable, hydrophobic and biodegradable polymers as drug delivery vehicles. Macromol Biosci 2010;10(8):825-35
  • Timbart L, Tse MY, Pang SC, Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation. Macromol Biosci 2009;9:786-94
  • van de Weert M, van Steenbergen MJ, Cleland JL, Semisolid, self-catalyzed poly(ortho ester)s as controlled release systems: protein release and protein stability issues. J Pharm Sci 2002;91(4):1065-74
  • Heller J, Ng S, inventors. PEG-poly(ortho ester), PEG-poly(ortho ester)-PEG, and poly(ortho ester)-PEG-poly(ortho ester) block copolymers. US5939453; 1999
  • Ng S, Vandamme T, Taylor M, Synthesis and erosion studies of self-catalyzed poly(ortho ester)s. Macromolecules 1997;30(4):770-2
  • Merkli A, Heller J, Tabatabay C, Purity and stability assessment of a semi-solid poly(ortho ester) used in drug delivery systems. Biomaterials 1996;17(9):897-902
  • Amsden BG, Timbart L, Marecak D, VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate). J Control Release 2010;145(2):109-15
  • Sharifpoor S, Amsden B. In vitro release of a water-soluble agent from low viscosity biodegradable, injectable oligomers. Eur J Pharm Biopharm 2007;65(3):336-45
  • Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010;31(24):6279-308
  • Richardson TP, Peters MC, Ennett AB, Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19(11):1029-34
  • Cao RH, Brakenhielm E, Pawliuk R, Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003;9(5):604-13
  • Greenberg JI, Shields DJ, Barillas SG, A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 2008;456(7223):809-U101
  • Hemmrich K, Salber J, Meersch M, Three-dimensional nonwoven scaffolds from a novel biodegradable poly(ester amide) for tissue engineering applications. J Mater Sci Mater Med 2008;19(1):257-67
  • Kleiman NS, Patel NC, Allen KB, Evolving revascularization approaches for myocardial ischemia. Am J Cardiol 2003;92(9B):9N
  • Ruel M, Laham RJ, Parker JA, Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J Thorac Cardiovasc Surg 2002;124(1):28-34
  • Laham RJ, Sellke FW, Edelman ER, Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery – Results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 1999;100(18):1865-71
  • Mukherjee R, Zavadzkas JA, Saunders SM, Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann Thorac Surg 2008;86(4):1268-77
  • Abbott JD, Huang Y, Liu D, Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004;110(21):3300-5
  • Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 2002;16(10):1992-2003
  • Pasha Z, Wang Y, Sheikh R, Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 2008;77(1):134-42
  • Aiuti A, Webb IJ, Bleul C, The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood. J Exp Med 1997;185(1):111-20
  • Bladergroen BA, Siebum B, Siebers-Vermeulen KGC, In vivo recruitment of hematopoietic cells using stromal cell-derived factor 1 alpha-loaded heparinized three-dimensional collagen scaffolds. Tissue Eng A 2009;15(7):1591-9
  • Autiero M, Luttun A, Tjwa M, Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 2003;1(7):1356-70
  • Roy RS, Soni S, Harfouche R, Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis. Proc Natl Acad Sci USA 2010;107(31):13608-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.