1,726
Views
118
CrossRef citations to date
0
Altmetric
Reviews

Thermosensitive hydrogels for drug delivery

& , PhD
Pages 991-1007 | Published online: 13 May 2011

Bibliography

  • Kono K, Ozawa T, Yoshida T, Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 2010;31:7096-105
  • Ta T, Convertine AJ, Reyes CR, Thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 2010;11:1915-20
  • Regmi R, Bhattarai SR, Sudakar C, Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. J Mater Chem 2010;20:6158-63
  • Li Y, Liu R, Liu W, Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose- g -P(PEGMA) amphiphilic copolymers. J Polym Sci A Polym Chem 2008;46:6907-15
  • Kono K, Ozawa T, Yoshida T, Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials 2010;31:7096-105
  • Hsiue G. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide. Biomaterials 2002;23:457-62
  • Potta T, Chun C, Song SC. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. Biomaterials 2009;30:6178-92
  • Park MR, Chun C, Ahn SW, Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials 2010;31:1349-59
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev 2008;37:1473-81
  • Joo MK, Park MH, Choi BG, Reverse thermogelling biodegradable polymer aqueous solutions. J Mater Chem 2009;19:5891-905
  • Gou M, Gong C, Zhang J, Polymeric matrix for drug delivery: honokiol-loaded PCL-PEG-PCL nanoparticles in PEG-PCL-PEG thermosensitive hydrogel. J Biomed Mater Res A 2010;93:219-26
  • Wu J, Wei W, Wang LY, A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 2007;28:2220-32
  • Gordon S, Teichmann E, Young K, In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 2010;41:360-8
  • Liu YY, Shao YH, Lu J. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials 2006;27:4016-24
  • Zhang T, Yan Y, Wang X, Three-dimensional Gelatin and Gelatin/Hyaluronan Hydrogel Structures for Traumatic Brain Injury. J Bioact Compat Polym 2007;22:19-29
  • Hsiue G. Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 2003;24:2423-30
  • Zhang J, Xie R, Zhang SB, Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains. Polymer (Guildf) 2009;50:2516-25
  • Roos A. Development of a temperature sensitive drug release system for polymeric implant devices. Biomaterials 2003;24:4417-23
  • Shi W, Ji Y, Zhang X, Characterization of pH- and thermosensitive hydrogel as a vehicle for controlled protein delivery. J Pharm Sci 2011;100:886-95
  • Yu Y-Y, Tian F, Wei C, Facile synthesis of triple-stimuli (photo/pH/thermo) responsive copolymers of 2-diazo-1,2-naphthoquinone-mediated poly(N -isopropylacrylamide- co - N -hydroxymethylacrylamide). J Polym Sci A Polym Chem 2009;47:2763-73
  • Metz N, Theato P. Synthesis and characterization of base labile poly(N -isopropylacrylamide) networks utilizing a reactive cross-linker. Macromolecules 2009;42:37-9
  • Fundueanu G, Constantin M, Bortolotti F, Cellulose acetate butyrate-pH/thermosensitive polymer microcapsules containing aminated poly(vinyl alcohol) microspheres for oral administration of DNA. Eur J Pharm Biopharm 2007;66:11-20
  • Zhu Z, Sukhishvili SA. Temperature-induced swelling and small molecule release with hydrogen-bonded multilayers of block copolymer micelles. ACS Nano 2009;3:3595-605
  • Kretlow JD, Hacker MC, Klouda L, Synthesis and characterization of dual stimuli responsive macromers based on poly(N-isopropylacrylamide) and poly(vinylphosphonic acid). Biomacromolecules 2010;11:797-805
  • Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004;104:6017-84
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010;62:83-99
  • Chenite A, Chaput C, Wang D, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155-61
  • Ruel-Gariepy E, Leclair G, Hildgen P, Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002;82:373-83
  • Sun J, Jiang G, Qiu T, Injectable chitosan-based hydrogel for implantable drug delivery: body response and induced variations of structure and composition. J Biomed Mater Res Part A 2011;95A:1019-27
  • Molinaro G, Leroux JC, Damas J, Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 2002;23:2717-22
  • Goa KL, Benfield P. Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs 1994;47:536-66
  • Ohya S, Nakayama Y, Matsuda T. Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2001;2:856-63
  • Mayol L, Quaglia F, Borzacchiello A, A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm 2008;70:199-206
  • Hsu SH, Leu YL, Hu JW, Physicochemical characterization and drug release of thermosensitive hydrogels composed of a hyaluronic acid/pluronic f127 graft. Chem Pharm Bull (Tokyo) 2009;57:453-8
  • Teeri TT, Brumer H, Daniel G, Biomimetic engineering of cellulose-based materials. Trends Biotechnol 2007;25:299-306
  • Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 1979;24:1073-87
  • Desbrieres J, Hirrien M, Ross-Murphy S. Thermogelation of methylcellulose: rheological considerations. Polymer (Guildf) 2000;41:2451-61
  • Lee SC. Control of thermogelation properties of hydrophobically-modified methylcellulose. J Bioact Compat Polym 2005;20:5-13
  • Koffi AA, Agnely F, Besnard M, In vitro and in vivo characteristics of a thermogelling and bioadhesive delivery system intended for rectal administration of quinine in children. Eur J Pharm Biopharm 2008;69:167-75
  • Chen H, Fan M. Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 2008;23:38-48
  • Karewicz A, Zasada K, Szczubiałka K, ‘Smart’ alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 2010;385:163-9
  • Lu S, Liu M, Ni B, A novel pH- and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci B Polym Phys 2010;48:1749-56
  • Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005;15:378-86
  • Tai KF, Chen PJ, Chen DS, Concurrent delivery of GM-CSF and endostatin genes by a single adenoviral vector provides a synergistic effect on the treatment of orthotopic liver tumors. J Gene Med 2003;5:386-98
  • Le UM, Shaker DS, Sloat BR, A thermo-sensitive polymeric gel containing a gadolinium (Gd) compound encapsulated into liposomes significantly extended the retention of the Gd in tumors. Drug Dev Ind Pharm 2008;34:413-18
  • Compte M, Alonso-Camino V, Santos-Valle P, Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Ther 2010;17:745-51
  • Gil E, Hudson S. Stimuli-reponsive polymers and their bioconjugates. Polymer 2004;29:1173-222
  • Yang Y, Wang J, Zhang X, A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J Control Release 2009;135:175-82
  • Liu Y, Lu WL, Wang JC, Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 2007;117:387-95
  • Guo DD, Xu CX, Quan JS, Synergistic anti-tumor activity of paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel in vitro and in vivo. Biomaterials 2009;30:4777-85
  • Niu G, Du F, Song L, Synthesis and characterization of reactive poloxamer 407s for biomedical applications. J Control Release 2009;138:49-56
  • Choi WI, Yoon KC, Im SK, Remarkably enhanced stability and function of core/shell nanoparticles composed of a lecithin core and a pluronic shell layer by photo-crosslinking the shell layer: in vitro and in vivo study. Acta Biomater 2010;6:2666-73
  • Yang Z, Ding J. A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block. Macromol Rapid Commun 2008;29:751-6
  • Buwalda SJ, Dijkstra PJ, Calucci L, Influence of amide versus ester linkages on the properties of eight-armed PEG-PLA star block copolymer hydrogels. Biomacromolecules 2010;11:224-32
  • Kang YM, Lee SH, Lee JY, A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustable therapeutic window. Biomaterials 2010;31:2453-60
  • Jeong B, Windisch C.F, Park M.J, Phase transition of the PLGA-g-PEG copolymer aqueous solutions. J Phys Chem B 2003;107:10032-9
  • Clapper J, Skeie J, Mullins R, Development and characterization of photopolymerizable biodegradable materials from PEG–PLA–PEG block macromonomers. Polymer (Guildf) 2007;48:6554-64
  • Nagahama K, Imai Y, Nakayama T, Thermo-sensitive sol–gel transition of poly(depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution. Polymer (Guildf) 2009;50:3547-55
  • Molina I, Li S, Martinez MB, Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 2001;22:363-9
  • Jiang Z, You Y, Deng X, Injectable hydrogels of poly(epsilon-caprolactone-co-glycolide)–poly(ethylene glycol)–poly(epsilon;-caprolactone-co-glycolide) triblock copolymer aqueous solutions. Polymer (Guildf) 2007;48:4786-92
  • Yu L, Zhang H, Ding J. Effects of precipitate agents on temperature-responsive sol–gel transitions of PLGA–PEG–PLGA copolymers in water. Colloid Polym Sci 2010;288:1151-9
  • Shim WS, Kim JH, Park H, Biodegradability and biocompatibility of a pH- and thermosensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials 2006;27:5178-85
  • He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189-207
  • Yang J, Jia L, Hao Q, New biodegradable amphiphilic block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by novel aluminum metal complexes. II. Micellization and solution to gel transition. Macromol Biosci 2005;5:896-903
  • Jeong B, Bae Y, Lee D, Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997;388:860-2
  • Yu L, Zhang Z, Zhang H, Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 2010;11:2169-78
  • Yu L, Zhang Z, Zhang H, Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 2009;10:1547-53
  • Kato M, Toyoda H, Namikawa T, Optimized use of a biodegradable polymer as a carrier material for the local delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2). Biomaterials 2006;27:2035-41
  • Jiang WW, Su SH, Eberhart RC, Phagocyte responses to degradable polymers. J Biomed Mater Res A 2007;82:492-7
  • Mi P, Ju XJ, Xie R, A novel stimuli-responsive hydrogel for K+-induced controlled-release. Polymer (Guildf) 2010;51:1648-53
  • Zhang BY, He WD, Li LY, Reducibly degradable hydrogels of PNIPAM and PDMAEMA. Synthesis, stimulus-response and drug release. J Polym Sci A Polym Chem 2010;48:3604-12
  • Li LY, He WD, Li J, Shell-cross-linked micelles from PNIPAM-b-(PLL)2 Y-shaped miktoarm star copolymer as drug carriers. Biomacromolecules 2010;11:1882-90
  • MacKinnon N, Guerin G, Liu B, Triggered instability of liposomes bound to hydrophobically modified core-shell PNIPAM hydrogel beads. Langmuir 2010;26:1081-9
  • Feng Z, Lin L, Yan Z, Dual responsive block copolymer micelles functionalized by NIPAM and azobenzene. Macromol Rapid Commun 2010;31:640-4
  • Zhang J, Feng K, Cuddihy M, Spontaneous formation of temperature-responsive assemblies by molecular recognition of a beta-cyclodextrin-containing block copolymer and poly(N-isopropylacrylamide). Soft Matter 2010;6:3669-79
  • Thimma Reddy T, Takahara A. Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer (Guildf) 2009;50:3537-46
  • Jiang X, Liu S, Narain R. Degradable thermoresponsive core cross-linked micelles: fabrication, surface functionalization, and biorecognition. Langmuir 2009;25:13344-50
  • Purushotham S, Ramanujan RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 2010;6:502-10
  • Tang X, Liang X, Yang Q, AB 2 -type amphiphilic block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) via single-electron transfer living radical polymerization: synthesis and characterization. J Polym Sci A Polym Chem 2009;47:4420-7
  • MacKinnon N, Guerin G, Liu B, Liposome-hydrogel bead complexes prepared via biotin-avidin conjugation. Langmuir 2009;25:9413-23
  • Vihola H, Laukkanen A, Valtola L, Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005;26:3055-64
  • Liu P, Luo Q, Guan Y, Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer (Guildf) 2010;51:2668-75
  • Choi C, Chae S, Nah J. Thermosensitive poly(N-isopropylacrylamide)-b-poly(epsilon-caprolactone) nanoparticles for efficient drug delivery system. Polymer (Guildf) 2006;47:4571-80
  • Akimoto J, Nakayama M, Sakai K, Temperature-induced intracellular uptake of thermoresponsive polymeric micelles. Biomacromolecules 2009;10:1331-6
  • Gil ES, Hudson SM. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels. Biomacromolecules 2007;8:258-64
  • Kim YS, Gil ES, Lowe TL. Synthesis and characterization of thermoresponsive- co -biodegradable linear−dendritic copolymers. Macromolecules 2006;39:7805-11
  • Cho EC, Kim JW, Hyun DC, Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids. Langmuir 2010;26:3854-9
  • Zhang ZX, Liu X, Xu FJ, Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 2008;41:5967-70
  • Ma Z, Nelson DM, Hong Y, Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability. Biomacromolecules 2010;11:1873-81
  • Ghugare SV, Mozetic P, Paradossi G. Temperature-sensitive poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery. Biomacromolecules 2009;10:1589-96
  • Hong JS, Stavis SM, DePaoli Lacerda SH, Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir 2010;26:11581-8
  • Fundueanu G, Constantin M, Oanea I, Entrapment and release of drugs by a strict ‘on-off’ mechanism in pullulan microspheres with pendant thermosensitive groups. Biomaterials 2010;31:9544-53
  • Hu J, Ge Z, Zhou Y, Unique thermo-induced sequential gel−sol−gel transition of responsive multiblock copolymer-based hydrogels. Macromolecules 2010;43:5184-7
  • Wang ZC, Xu XD, Chen CS, In situ formation of thermosensitive PNIPAAm-based hydrogels by Michael-type addition reaction. ACS Appl Mater Interfaces 2010;2:1009-18
  • Alzari V, Monticelli O, Nuvoli D, Stimuli responsive hydrogels prepared by frontal polymerization. Biomacromolecules 2009;10:2672-7
  • Censi R, Vermonden T, Deschout H, Photopolymerized thermosensitive poly(HPMAlactate)-PEG-based hydrogels: effect of network design on mechanical properties, degradation, and release behavior. Biomacromolecules 2010;11:2143-51
  • Misra GP, Singh RSJ, Aleman TS, Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 2009;30:6541-7
  • Zhang JT, Keller TF, Bhat R, A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release. Acta Biomater 2010;6:3890-8
  • Zhang JT, Petersen S, Thunga M, Micro-structured smart hydrogels with enhanced protein loading and release efficiency. Acta Biomater 2010;6:1297-306
  • Lee JS, Zhou W, Meng F, Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. J Control Release 2010;146:400-8
  • Fundueanu G, Constantin M, Ascenzi P. Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomater 2009;5:363-73
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002;82:189-212
  • Zhang XZ, Wu DQ, Chu CC. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 2004;25:3793-805
  • Zhao C, Zhuang X, He P, Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer (Guildf) 2009;50:4308-16
  • Ankareddi I, Bailey MM, Brazel CS, Developmental toxicity assessment of thermoresponsive poly(N-isopropylacrylamide-co-acrylamide) oligomers in CD-1 mice. Birth Defects Res B Dev Reprod Toxicol 2008;83:112-16
  • Guan J, Hong Y, Ma Z, Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability. Biomacromolecules 2008;9:1283-92
  • Li Z, Wang F, Roy S, Injectable, highly flexible, and thermosensitive hydrogels capable of delivering superoxide dismutase. Biomacromolecules 2009;10:3306-16
  • Wang F, Li Z, Khan M, Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater 2010;6:1978-91
  • Zhou T, Wu W, Zhou S. Engineering oligo(ethylene glycol)-based thermosensitive microgels for drug delivery applications. Polymer (Guildf) 2010;51:3926-33
  • Lutz J-F, Akdemir O, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 2006;128:13046-7
  • Abulateefeh SR, Saeed AO, Aylott JW, Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chem Commun (Camb) 2009;40:6068-70
  • Kumbar SG, Bhattacharyya S, Nukavarapu SP, In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet P 2006;16:365-85
  • Ahn S, Monge EC, Song SC. Ion and pH effect on the lower critical solution temperature phase behavior in neutral and acidic poly(organophosphazene) counterparts. Langmuir 2009;25:2407-18
  • Al-Abd AM, Hong KY, Song SC, Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release 2010;142:101-7
  • Bhowmik M, Das S, Sinha J, Methyl cellulose based sustained release thermosensitive in situ fast gelling ocular delivery of ketorolac tromethamine. Asian J Chem 2010;22:2147-54
  • Yu L, Zhang H, Ding J. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew Chem Int Ed 2006;45:2232-5
  • Jeong B, Bae Y H, Kim S W. Thermoreversible gelation of PEG−PLGA−PEG triblock copolymer aqueous solutions. Macromolecules 1999;32:7064-9
  • Zhang H, Yu L, Ding J. Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water. Macromolecules 2008;41:6493-9
  • Yoshida R, Sakai K, Ukano T, Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: I. Drug release. J Biomater Sci Polym Ed 1991;3:155-62
  • Li SK, D'Emanuele A. On-off transport through a thermoresponsive hydrogel composite membrane. J Control Release 2001;75:55-67
  • Bikram M, Gobin AM, Whitmire RE, Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release 2007;123:219-27
  • Garbern JC, Hoffman AS, Stayton PS. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules 2010;11:1833-9
  • Kaneko Y, Sakai K, Kikuchi A, Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 1995;28:7717-23
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002;54:759-79
  • Kabanov AV. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 2006;58:1597-621
  • Kabanov A, Zhu J, Alakhov V. Non-viral vectors for gene therapy. 2nd edition. Part 1 Academic Press; Amsterdam: 2005
  • Kabanov AV, Batrakova EV, Sriadibhatla S, Polymer genomics: shifting the gene and drug delivery paradigms. J Control Release 2005;101:259-71
  • Cho JK, Hong KY, Park JW, Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J Drug Target 2011;19:270-80
  • Yu L, Chang G T, Zhang H, Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int. J. Pharm 2008;348:95-106
  • Kwon JS, Park IK, Cho AS, Enhanced angiogenesis mediated by vascular endothelial growth factor plasmid-loaded thermo-responsive amphiphilic polymer in a rat myocardial infarction model. J Control Release 2009;138:168-76
  • Seshadri G, Sy JC, Brown M, The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials 2010;31:1372-9
  • Hou D, Youssef EA-S, Brinton TJ, Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005;112:I150-6
  • Oh KS, Song JY, Yoon SJ, Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release 2010;146:207-11
  • Galperin A, Long TJ, Ratner BD. Degradable, Thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules 2010;11:2583-92
  • Yuen WW, Du NR, Chan CH, Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc Natl Acad Sci USA 2010;107:17933-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.