354
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Antiangiogenic anticancer strategy based on nanoparticulate systems

, PhD & , PhD
Pages 1041-1056 | Published online: 17 May 2011

Bibliography

  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182
  • Gref R, Minamitake Y, Peracchia MT, Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3
  • Soman N, Baldwin S, Hu G, Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 2009;119:2830-42
  • Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Contr Rel 2000;65:271-84
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7:771-82
  • Sengupta S, Eavarone D, Capilia I, Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005;436:568-72
  • Campbell RB, Fukumura D, Brown EB, Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 2002;62:6831-6
  • Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377-80
  • Murphy EA, Majeti BK, Barnes LA, Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci 2008;105:9343-8
  • Anand S, Majeti B, Acevedo L, MicroRNA-132–mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 2010;16:909-14
  • Pastorino F, Brignole C, Di Paolo D, Targeting liposomal chemotherapy via both tumor cell–specific and tumor vasculature–specific ligands potentiates therapeutic efficacy. Cancer Res 2006;66:10073-82
  • Sugahara KN, Teesalu T, Karmali PP, Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009;16:510-20
  • Karmali PP, Kotamraju VR, Kastantin M, Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine 2009;5:73-82
  • van Vlerken L, Amiji MA. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Exp Opin Drug Deliv 2006;3:205-16
  • Wang a, Gu F, Zhang L, Biofunctionalized targeted nanoparticles for therapeutic applications. Exp Opin Biol Ther 2008;8:1063-70
  • Ruoslahti E, Bhatia S, Sailor M. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010;188:759-68
  • Jain RK. Normalizing of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58-62
  • Tong RT, Boucher Y, Kozin SV, Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004;64:3731-6
  • Willett CG, Boucher Y, di Tomaso E, Direct evidence that specific VEGF-antibody bevacizumab has anti vascular effect on human rectal cancer. Nat Med 2004;10:145-7
  • Brekken RA, Huang X, King SW, Thorpe PE. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 1998;58:1952-9
  • Mukherjee P, Bhattacharya R, Mukhopadhyay D. Gold nanoparticles bearing functional anti-cancer drug and anti-angiogenic agent: A “2 in 1” system with potential application in cancer therapeutics. J Biomed Nanotechnol 2005;1:224-8
  • Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996;226:324-8
  • Kim WJ, Yockman JW, Jeong JH, Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J Control Release 2006;114:381-8
  • Oba M, Vachutinsky Y, Miyata K, Antiangiogenic gene therapy of solid tumor by systemic injection of polyplex micelles loading plasmid DNA encoding soluble Flt-1. Mol Pharmaceutics 2010;7:501e9
  • Vachutinsky Y, Oba M, Miyata K, Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 2011;149:51-7
  • Schiffelers R, Koning G, ten Hagen T, Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 2003;91:115-22
  • Kommareddy S, Amiji M. Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Therapy 2007;14:488-98
  • Hood J, Bednarski M, Frausto R, Tumor regression by targeted gene delivery to the neovasculature. Science 2002;296:2404-7
  • Rudin CM, Marshall J, Huang C, Delivery of a liposomal c-raf-1 asntisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors A Phase I study. Clin Cancer Res 2004;10:7244-51
  • Schiffelers RM, Ansari A, Xu J, Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticles. Nucleic Acids Research 2004;32:e149
  • Kim SH, Jeong JH, Lee SH, PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J Control Rel 2006;116:123-9
  • Kim SH, Jeong JH, Lee SH, LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem 2008;19:2156-62
  • Mendel DB, Schreck RE, West DC, The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 2000;6:4848-58
  • Zangari M, Anaissie E, Stopeck A, Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 2004;10:88-95
  • Katanasaka Y, Ida T, Asai T, Antiangiogenic cancer therapy using tumor vasculature-targeted liposomes encapsulating 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one, SU5416. Cancer Letters 2008;270:260-8
  • Singhal S, Singhal J, Yadav S, RLIP76: a target for kidney cancer therapy. Cancer Res 2009;69:4244-51
  • Awasthi S, Cheng J, Singhal SS, Novel function of human RLIP76: ATP-dependent transport of glutathione conjugates and doxorubicin. Biochemistry 2000;39:9327-34
  • Singhal S, Sehrawat A, Sahu M, Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Canc 2010;126:1327-37
  • Lingen MW, Polverini PJ, Bouck NP. Inhibition of squamous cell carcinoma angiogenesis by direct interaction of retinoic acid with endothelial cells. Lab Investig 1996;74:476-83
  • Pal S, Iruela-Arispe M, Harvey V, Retinoic acid selectively inhibits the vascular permeabilizing effect of VPF/VEGF an early step in the angiogenic cascade. Microvascular Res 2000;60:112-20
  • Park K, Tran T, Oh YH, Ternary biomolecular nanoparticles for targeting of cancer cells and anti-angiogenesis. Eur J Pharm Sci 2010;41:148-55
  • Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annual Rev Biochem 1989;58:575-602
  • Bikfalvi A, Klein S, Pintucci G, Biological roles of fibroblast growth factor-2. Endocr Rev 1997;18:26-32
  • Jacobson AM, Hahnenberger R. Antiangiogenic effect of heparin and other sulphated glycosaminoglycans in the chick embryo chorioallantoic membrane. Pharmacol Toxicol 1991;69:122-6
  • Plum S, Holaday J, Ruiz A, Administration of a liposomal FGF-2 peptide vaccine leads to abrogation of FGF-2-mediated angiogenesis and tumor development. Vaccine 2000;19:1294-303
  • Kemp M, Kumar A, Mousa S, Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology 2009;20:455104
  • Mukherjee P, Bhattacharya R, Wang P, Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 2005;11:3530-4
  • Gurunathan S, Lee KJ, Kalishwaralal K, Antiangiogenic properties of silver nanoparticles. Biomaterials 2009;30:6341-50
  • Hosang M. Suramin binds to platelet growth factor and inhibits its biological activity. J Cell Biochem 1985;29:265-73
  • Pesenti E, Sola F, Mongelli N, Suramin prevents neovascularisation and tumor growth through blocking of basic fibroblast growth factor activity. Br J Cancer 1992;66:367-72
  • Pollack M, Richard M. Suramin blockade of insulin-like growth factor 1-stimulated proliferation of human osteosarcoma cells. J Nati Cancer Inst 1990;82:1349-52
  • Raj PA, Marcus E, Rein R. Conformational requirements of suramin to target angiogenic growth factors. Angiogenesis 1998;2:183-99
  • Olander JV, Connnolly DT, DeLarco JE. Specific binding of vascular permeability factor to endothelial cells. Biochem Biophys Res Commun 1991;175:68-76
  • Song S, Yu B, Wei Y, Low-dose suramin enhanced paclitaxel activity in chemotherapy-naive and paclitaxel-pretreated human breast xenograft tumors. Clin Cancer Res 2004;10:6058-65
  • Nie H, Fu Y, Wang CH. Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials 2010;31:8732-40
  • Taraboletti G, Belotti D, Borsotti P, The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor. Cell Growth Differ 1997;8:471-9
  • Rivera-Fillat MP, Reig F, Martinez EM, Grau-Oliete MR. Improved therapeutic responses for liposomal doxorubicin targeted via thrombospondin peptidomimetics versus untargeted doxorubicin. J Peptide Sci 2010;16:315-21
  • Baselga J. The EGFR as a target for anticancer therapy - focus on cetuximab. Eur J Cancer 2001;37 (Suppl 4):16-22
  • Mamot C, Drummond DC, Greiser U, Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 2003;63:3154-61
  • Pan X, Lee RJ. Construction of anti-EGFR immunoliposomes via folate-folate binding protein affinity. Int J Pharm 2007;336:276-83
  • Mamot C, Drummond DC, Noble C, Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005;65:11631-8
  • Patra CR, Bhattacharya R, Wang E, Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;(68):1970-8
  • Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene 2007;26:3637-43
  • Lee A, Wang Y, Cheng H, The co-delivery of paclitaxel and herceptin using cationic micellar nanoparticles. Biomaterials 2008;30:919-27
  • Oliveira S, Schiffelers R, van der Veeken J, Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Control Release 2010;145:165-75
  • Li SD, Chen YC, Hackett MJ, Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 2008;16:163-9
  • Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther 2008;16:942-6
  • Marslin G, Sheeba CJ, Kalaichelvan VK, Poly(D,L-lactic-co-glycolic acid) nanoencapsulation reduces erlotinib-induced subacute toxicity in rat. J Biomed Nanotechnol 2009;5:464-71
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-74
  • Medina O, Soderlund T, Laakkonen L, Binding of novel peptide inhibitors of type IV collagenases to phospholipid membranes and use in liposome targeting to tumor cells in vitro. Cancer Res 2001;61:3978-85
  • Lee GY, Park K, Kim SY, Byun Y. MMPs-specific PEGylated peptide-DOX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm 2007;67:646-54
  • Ahmed B, Van Eijk L, Bouma-Ter Steege JC, Vascular targeting effect of combretastatin A-4 phosphate dominates the inherent angiogenesis inhibitory activity. Int J Cancer 2003;105:20-5
  • Patillo C, Sarraf F, Nallamothu R, Targeting of the antivascular drug combretastatin to irradiated tumors results in tumor growth delay. Pharm Res 2005;22:1117-20
  • Pasquier E, Sinnappan S, Munoz M, Cavallaris M. ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol Cancer Ther 2010;9:1408-18
  • D'Amato RJ, Lin CM, Flynn E, 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci USA 1994;91,3964-68
  • Sidor C, D'Amato R, Miller KD. The potential and suitability of 2-methoxyestradiol in cancer therapy. Clin Cancer Res 2005;11:6094-95
  • Du B, Li Y, Li X, Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes. Int J Pharm 2010;384:140-7
  • Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 1993;329:1318-27
  • Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582-4
  • Hollstein M, Rice K, Greenblatt MS, Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994;22:3551-5
  • Gautam A, Densmore CL, Melton S, Aerosol delivery of PEI-p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis. Cancer Gene Ther 2002;9:28-38
  • Gautam A, Waldrep JC, Densmore CL, Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther 2002;9:353-7
  • Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharmaceutics 2004;1:211-19
  • Folkman J. Antiangiogenesis in cancer therapy - endostatin and its mechanisms of action. Experimental Cell Res 2006;312:595-607
  • Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Research 1999;59:3308-12
  • Dutour A, Monteil J, Paraf F, Endostatin cDNA/cationic liposome complexes as a promising therapy to prevent lung metastases in osteosarcoma: study in a human-like rat orthotopic tumor. Molecular Therapy 2005;11:311-19
  • Sund M, Hamano Y, Sugimoto H, Function of endogenous inhibitors of angiogenesis as endothelium specific tumor suppressors. Proc Natl Acad Sci USA 2005;102:2934-9
  • Hammady T, Rabanel JM, Dhanikula R, Functionalized nanospheres loaded with anti-angiogenic drugs: Cellular uptake and angiosuppressive efficacy. Eur J Pharm Biopharm 2009;72:418-27
  • Sin N, Meng L, Wang M, The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci USA1997;94:6099-103
  • Ingber D, Fujita T, Kishimoto S, Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 1990;348:555-7
  • Bhargava P, Marshall JL, Rizvi N, A Phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer. Clin Cancer Res 1999;5:1989-95
  • Satchi-Fainaro R, Puder M, Davies J, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 2004;10:255-61
  • Benny O, Fainaru O, Adini A, An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nature Biotechnology 2008;26:799-807
  • Desgrosellier JS, Cheresh D. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10:9-22
  • Kerr JS, Slee AM, Mousa SA. The alpha v integrin antagonists as novel anticancer agents: an update. Expert Opin Investig Drugs 2002;11:1765-74
  • Dechanstreiter MA, Planker E, Matha B, N-Methylated cyclic RGD peptides as highly active and selective alphaVbeta3 integrin antagonists. J Med Chem 1999;42:3033-40
  • Montet X, Funovics M, Montet-Abou K, Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 2006;49:6087-93
  • Kim JH, Kim YS, Park K, Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 2008;29:1920-30
  • Masiero L, Figg WD, Kohn EC. New anti-angiogenesis agents: review of the clinical experience with carboxyamido-triazole (CAI), thalidomide, TNP-470 and interleukin-12. Angiogenesis 1997;1:23-35
  • Diez S, Navarro G, de ILarduya CT. In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J Gene Med 2009;11:38-45
  • Wang Y, Gao S, Ye WH, Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nature Mat 2006;5:791-96
  • Rodrigo-Garzon M, Berraondo P, Ochoa L, Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther 2010;17:20-7
  • Kim TH, Jin H, Kim HW, Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 2006;5:1723-32
  • Ramesh R, Ito I, Saito Y, Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery. DNA and Cell Biology 2004;23:850-7
  • Merritt WM, Lin YG, Spannuth WA, Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 2008;100:359-72
  • Banciu M, Schiffelers R, Fens M, Anti-angiogenic effects of liposomal prednisolone phosphate on B16 melanoma in mice. J Contr Rel 2006;113:1-8
  • Banciu M, Metselaar JM, Schiffelers R, Storm G. Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice. J Steroid Biochem Mol Biol 2008;111:101-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.