741
Views
125
CrossRef citations to date
0
Altmetric
Reviews

Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale

, , &
Pages 1085-1104 | Published online: 21 May 2011

Bibliography

  • Good RJ. On the definition of adhesion. J Adhes 1976;8(1):1-9
  • Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005;57(11):1556-68
  • Haas J, Lehr CM. Developments in the area of bioadhesive drug delivery systems. Expert Opin Biol Ther 2002;2(3):287-98
  • Davidovich-Pinhas M, Bianco-Peled H. Mucoadhesion: a review of characterization techniques. Expert Opin Drug Deliv 2010;7(2):259-71
  • Roy K, Mao HQ, Huang SK, Oral gene delivery with chitosan−DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999;5(4):387-91
  • Sakuma S, Sudo R, Suzuki N, Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int J Pharm 1999;177(2):161-72
  • Sarmento B, Ribeiro A, Veiga F, Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007;24(12):2198-206
  • Sarmento B, Ribeiro A, Veiga F, Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 2007;8(10):3054-60
  • Shen J, Wang Y, Ping Q, Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release 2009;137(3):217-23
  • Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 1997;14(3):259-66
  • Lippmann M, Yeates DB, Albert RE. Deposition, retention, and clearance of inhaled particles. Br J Ind Med 1980;37(4):337-62
  • Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem 2003;278(50):50393-401
  • Lai SK, Wang YY, Wirtz D, Micro- and macrorheology of mucus. Adv Drug Deliv Rev 2009;61(2):86-100
  • Accili D, Menghi G, Bonacucina G, Mucoadhesion dependence of pharmaceutical polymers on mucosa characteristics. Eur J Pharm Sci 2004;22(4):225-34
  • Lindemann J, Leiacker R, Rettinger G, Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci 2002;27(3):135-9
  • Fujishima H, Toda I, Yamada M, Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry. Br J Ophthalmol 1996;80(1):29-32
  • Girardin F, Orgul S, Erb C, Relationship between corneal temperature and finger temperature. Arch Ophthalmol 1999;117(2):166-9
  • Sund-Levander M, Forsberg C, Wahren LK. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci 2002;16(2):122-8
  • Evans DF, Pye G, Bramley R, Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035-41
  • Strous GJ, Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 1992;27(1-2):57-92
  • Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci 2006;11(2-3):164-70
  • Varum FJ, Veiga F, Sousa JS, An investigation into the role of mucus thickness on mucoadhesion in the gastrointestinal tract of pig. Eur J Pharm Sci 2010;40(4):335-41
  • Cone RA. Mucus. In: Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR, Mayer L, editors, Mucosal immunol. 3rd edition. Academic Press, San Diego, CA; 2005. p. 49-72
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev 2009;61(2):75-85
  • Jubeh TT, Barenholz Y, Rubinstein A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm Res 2004;21(3):447-53
  • Lee S, Muller M, Rezwan K, Porcine gastric mucin (PGM) at the water/poly(dimethylsiloxane) (PDMS) interface: influence of pH and ionic strength on its conformation, adsorption, and aqueous lubrication properties. Langmuir 2005;21(18):8344-53
  • Yudin AI, Hanson FW, Katz DF. Human cervical mucus and its interaction with sperm: a fine-structural view. Biol Reprod 1989;40(3):661-71
  • Olmsted SS, Padgett JL, Yudin AI, Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J 2001;81(4):1930-7
  • Lai SK, O'Hanlon DE, Harrold S, Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 2007;104(5):1482-7
  • Lai SK, Wang YY, Hida K, Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci USA 2010;107(2):598-603
  • Willits RK, Saltzman WM. Synthetic polymers alter the structure of cervical mucus. Biomaterials 2001;22(5):445-52
  • McGill S, Smyth H. Disruption of the mucus barrier by topically applied exogenous particles. Mol Pharm 2010;7(6):2280-8
  • Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 1996;17(16):1553-61
  • Duchene D, Touchard F, Peppas NA. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm 1988;14(2-3):283-318
  • Lehr CM, Bouwstra JA, Kok W, Bioadhesion by means of specific binding of tomato lectin. Pharm Res 1992;9(4):547-53
  • Woodley J. Bioadhesion: new possibilities for drug administration? Clin Pharmacokinet 2001;40(2):77-84
  • Johnson KL, Kendall K, Roberts D. Surface energy and the contact of elastic solids. Proc R Soc Lond A 1971;324(1558):301-13
  • Carrillo JM, Raphael E, Dobrynin AV. Adhesion of nanoparticles. Langmuir 2010;26(15):12973-9
  • Durrer C, Irache JM, Puisieux F, Mucoadhesion of latexes. II. Adsorption isotherms and desorption studies. Pharm Res 1994;11(5):680-3
  • Serra L, Domenech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm 2009;71(3):519-28
  • Bridges JF, Woodley JF, Duncan R, Soluble N-(2-hydroxypropyl)methacrylamide copolymers as a potential oral, controlled-release, drug delivery system. I: bioadhesion to the rat intestine in vitro. Int J Pharm 1988;44(1-3):213-23
  • Irachea JM, Durrer C, Duchene D, In vitro study of lectin-latex conjugates for specific bioadhesion. J Control Release 1994;31(2):181-8
  • Lehr CM. Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release 2000;65(1-2):19-29
  • Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005;57(11):1569-82
  • Hoyer H, Hombach J, Perera G, Synthesis and in vitro characterization of a novel PAA-ATP conjugate. Drug Dev Ind Pharm 2011;37(3):300-9
  • Kharenko EA, Larionova NI, Demina NB. Mucoadhesive drug delivery systems [review]. Pharm Chem J 2009;43(4):200-8
  • Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm 2005;60(1):1-16
  • Tamburic S, Craig DQM. A comparison of different in vitro methods for measuring mucoadhesive performance. Eur J Pharm Biopharm 1997;44(2):159-67
  • Grabovac V, Guggi D, Bernkop-Schnurch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev 2005;57(11):1713-23
  • das Neves J, Amaral MH, Bahia MF. Performance of an in vitro mucoadhesion testing method for vaginal semisolids: influence of different testing conditions and instrumental parameters. Eur J Pharm Biopharm 2008;69(2):622-32
  • Edsman K, Hagerstrom H. Pharmaceutical applications of mucoadhesion for the non-oral routes. J Pharm Pharmacol 2005;57(1):3-22
  • Hagerstrom H, Bergstrom CA, Edsman K. The importance of gel properties for mucoadhesion measurements: a multivariate data analysis approach. J Pharm Pharmacol 2004;56(2):161-8
  • Takeuchi H, Thongborisute J, Matsui Y, Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev 2005;57(11):1583-94
  • Mugabe C, Hadaschik BA, Kainthan RK, Paclitaxel incorporated in hydrophobically derivatized hyperbranched polyglycerols for intravesical bladder cancer therapy. BJU Int 2009;103(7):978-86
  • Jintapattanakit A, Junyaprasert VB, Kissel T. The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci 2009;98(12):4818-30
  • Svensson O, Thuresson K, Arnebrant T. Interactions between drug delivery particles and mucin in solution and at interfaces. Langmuir 2008;24(6):2573-9
  • Durrer C, Irache JM, Duchene D, Mucin interactions with functionalized polystyrene latexes. J Colloid Interface Sci 1995;170(2):555-61
  • Ezpeleta I, Arangoa MA, Irache JM, Preparation of Ulex europaeus lectin-gliadin nanoparticle conjugates and their interaction with gastrointestinal mucus. Int J Pharm 1999;191(1):25-32
  • Wang X, Zheng C, Wu Z, Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res Part B Appl Biomater 2009;88(1):150-61
  • Lopedota A, Trapani A, Cutrignelli A, The use of Eudragit RS® 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur J Pharm Biopharm 2009;72(3):509-20
  • Ramteke S, Ganesh N, Bhattacharya S, Triple therapy-based targeted nanoparticles for the treatment of Helicobacter pylori. J Drug Target 2008;16(9):694-705
  • Chayed S, Winnik FM. In vitro evaluation of the mucoadhesive properties of polysaccharide-based nanoparticulate oral drug delivery systems. Eur J Pharm Biopharm 2007;65(3):363-70
  • Marx KA. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 2003;4(5):1099-120
  • Santos NC, Castanho MA. An overview of the biophysical applications of atomic force microscopy. Biophys Chem 2004;107(2):133-49
  • Patel D, Smith JR, Smith AW, An atomic force microscopy investigation of bioadhesive polymer adsorption onto human buccal cells. Int J Pharm 2000;200(2):271-7
  • Cleary J, Bromberg L, Magner E. Adhesion of polyether-modified poly(acrylic acid) to mucin. Langmuir 2004;20(22):9755-62
  • Iijima M, Yoshimura M, Tsuchiya T, Direct measurement of interactions between stimulation-responsive drug delivery vehicles and artificial mucin layers by colloid probe atomic force microscopy. Langmuir 2008;24(8):3987-92
  • Svensson O, Thuresson K, Arnebrant T. Interactions between chitosan-modified particles and mucin-coated surfaces. J Colloid Interface Sci 2008;325(2):346-50
  • Lamprecht A, Koenig P, Ubrich N, Low molecular weight heparin nanoparticles: mucoadhesion and behaviour in Caco-2 cells. Nanotechnology 2006;17(15):3673-80
  • Zourob M, Elwary S, Fan X, Label-free detection with the resonant mirror biosensor. Methods Mol Biol 2009;503:89-138
  • Suh J, Choy KL, Lai SK, PEGylation of nanoparticles improves their cytoplasmic transport. Int J Nanomedicine 2007;2(4):735-41
  • Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 1997;63(11):1481-92
  • Sanders NN, De Smedt SC, Van Rompaey E, Cystic fibrosis sputum: a barrier to the transport of nanospheres. Am J Respir Crit Care Med 2000;162(5):1905-11
  • Shen H, Hu Y, Saltzman WM. DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophys J 2006;91(2):639-44
  • Cu Y, Saltzman WM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm 2009;6(1):173-81
  • Cu Y, Saltzman WM. Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 2009;61(2):101-14
  • Boukari H, Brichacek B, Stratton P, Movements of HIV-virions in human cervical mucus. Biomacromolecules 2009;10(9):2482-8
  • Dawson M, Krauland E, Wirtz D, Transport of polymeric nanoparticle gene carriers in gastric mucus. Biotechnol Prog 2004;20(3):851-7
  • Lai SK, Hida K, Shukair S, Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J Virol 2009;83(21):11196-200
  • Crater JS, Carrier RL. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci 2010;10(12):1473-83
  • Suh J, Dawson M, Hanes J. Real-time multiple-particle tracking: applications to drug and gene delivery. Adv Drug Deliv Rev 2005;57(1):63-78
  • Makhlof A, Werle M, Tozuka Y, A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J Control Release 2011;149(1):81-8
  • Prego C, Fabre M, Torres D, Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 2006;23(3):549-56
  • Wirth M, Kneuer C, Lehr CM, Lectin-mediated drug delivery: discrimination between cytoadhesion and cytoinvasion and evidence for lysosomal accumulation of wheat germ agglutinin in the Caco-2 model. J Drug Target 2002;10(6):439-48
  • Fillafer C, Friedl DS, Wirth M, Fluorescent bionanoprobes to characterize cytoadhesion and cytoinvasion. Small 2008;4(5):627-33
  • Pimienta C, Lenaerts V, Cadieux C, Mucoadhesion of hydroxypropylmethacrylate nanoparticles to rat intestinal ileal segments in vitro. Pharm Res 1990;7(1):49-53
  • Pimienta C, Chouinard F, Labib A, Effect of various poloxamer coatings on in vitro adhesion of isohexylcyanoacrylate nanospheres to rat ileal segments under liquid flow. Int J Pharm 1992;80(1):1-8
  • Bernkop-Schnurch A, Weithaler A, Albrecht K, Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm 2006;317(1):76-81
  • Sajeesh S, Sharma CP. Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery. J Biomater Sci Polym Ed 2007;18(9):1125-39
  • Sandri G, Bonferoni MC, Rossi S, Nanoparticles based on N-trimethylchitosan: evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur J Pharm Biopharm 2007;65(1):68-77
  • Kawashima Y, Yamamoto H, Takeuchi H, Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol 2000;5(1):77-85
  • Bravo-Osuna I, Vauthier C, Farabollini A, Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 2007;28(13):2233-43
  • De Campos AM, Sanchez A, Gref R, The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 2003;20(1):73-81
  • Durrer C, Irache JM, Puisieux F, Mucoadhesion of latexes. I. Analytical methods and kinetic studies. Pharm Res 1994;11(5):674-9
  • Henning A, Schneider M, Bur M, Embryonic chicken trachea as a new in vitro model for the investigation of mucociliary particle clearance in the airways. AAPS PharmSciTech 2008;9(2):521-7
  • Henning A, Schneider M, Nafee N, Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv 2010;23(4):233-41
  • Arangoa MA, Campanero MA, Renedo MJ, Gliadin nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics. Pharm Res 2001;18(11):1521-7
  • Arbos P, Arangoa MA, Campanero MA, Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles. Int J Pharm 2002;242(1-2):129-36
  • Umamaheshwari RB, Ramteke S, Jain NK. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS PharmSciTech 2004;5(2):e32
  • Takeuchi H, Matsui Y, Sugihara H, Effectiveness of submicron-sized, chitosan-coated liposomes in oral administration of peptide drugs. Int J Pharm 2005;303(1-2):160-70
  • Thirawong N, Thongborisute J, Takeuchi H, Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Control Release 2008;125(3):236-45
  • Agueros M, Areses P, Campanero MA, Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles. Eur J Pharm Sci 2009;37(3-4):231-40
  • Kreuter J, Muller U, Munz K. Quantitative and microautoradiographic study on mouse intestinal distribution of polycyanoacrylate nanoparticles. Int J Pharm 1989;55(1):39-45
  • Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006;325(1-2):147-54
  • Yin L, Ding J, He C, Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009;30(29):5691-700
  • Steingoetter A, Kunz P, Weishaupt D, Analysis of the meal-dependent intragastric performance of a gastric-retentive tablet assessed by magnetic resonance imaging. Aliment Pharmacol Ther 2003;18(7):713-20
  • Choy YB, Park JH, McCarey BE, Mucoadhesive microdiscs engineered for ophthalmic drug delivery: effect of particle geometry and formulation on preocular residence time. Invest Ophthalmol Vis Sci 2008;49(11):4808-15
  • Kremser C, Albrecht K, Greindl M, In vivo determination of the time and location of mucoadhesive drug delivery systems disintegration in the gastrointestinal tract. Magn Reson Imaging 2008;26(5):638-43
  • Mauck CK, Katz D, Sandefer EP, Vaginal distribution of Replens and K-Y Jelly using three imaging techniques. Contraception 2008;77(3):195-204
  • Agueros M, Zabaleta V, Espuelas S, Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J Control Release 2010;145(1):2-8
  • Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009;26(5):1025-58
  • Sakuma S, Hayashi M, Akashi M. Design of nanoparticles composed of graft copolymers for oral peptide delivery. Adv Drug Deliv Rev 2001;47(1):21-37
  • Bernkop-Schnurch A. Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int J Pharm 2000;194(1):1-13
  • Sandri G, Bonferoni MC, Rossi S, Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech 2010;11(1):362-71
  • Takeuchi H, Matsui Y, Yamamoto H, Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release 2003;86(2-3):235-42
  • Carreno-Gomez B, Woodley JF, Florence AT. Studies on the uptake of tomato lectin nanoparticles in everted gut sacs. Int J Pharm 1999;183(1):7-11
  • Liu Y, Wang P, Sun C, Wheat germ agglutinin-grafted lipid nanoparticles: preparation and in vitro evaluation of the association with Caco-2 monolayers. Int J Pharm 2010;397(1-2):155-63
  • Yamamoto H, Kuno Y, Sugimoto S, Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release 2005;102(2):373-81
  • Grabovac V, Bernkop-Schnurch A. Development and in vitro evaluation of surface modified poly(lactide-co-glycolide) nanoparticles with chitosan-4-thiobutylamidine. Drug Dev Ind Pharm 2007;33(7):767-74
  • Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomedicine 2009;5(2):208-15
  • Wang YY, Lai SK, Suk JS, Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that "slip" through the human mucus barrier. Angew Chem Int Ed Engl 2008;47(50):9726-9
  • Tang BC, Dawson M, Lai SK, Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 2009;106(46):19268-73
  • De Ascentiis A, DeGrazia JL, Bowman CN, Mucoadhesion of poly(2-hydroxyethyl methacrylate) is improved when linear poly(ethylene oxide) chains are added to the polymer network. J Control Release 1995;33(1):197-201
  • Ponchel G, Montisci MJ, Dembri A, Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur J Pharm Biopharm 1997;44(1):25-31
  • Lai SK, Wang YY, Cone R, Altering mucus rheology to "solidify" human mucus at the nanoscale. PLoS ONE 2009;4(1):e4294
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61(2):158-71
  • Suk JS, Lai SK, Wang YY, The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009;30(13):2591-7
  • Yamanaka YJ, Leong KW. Engineering strategies to enhance nanoparticle-mediated oral delivery. J Biomater Sci Polym Ed 2008;19(12):1549-70
  • Lamprecht A, Yamamoto H, Takeuchi H, A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles. J Control Release 2005;104(2):337-46
  • Bhavsar MD, Amiji MM. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release 2007;119(3):339-48
  • Sakloetsakun D, Perera G, Hombach J, The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate. AAPS PharmSciTech 2010;11(3):1185-92
  • Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007;104(29):11901-4
  • Decuzzi P, Ferrari M. The receptor-mediated endocytosis of nonspherical particles. Biophys J 2008;94(10):3790-7
  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 2009;26(1):244-9
  • Madsen F, Eberth K, Smart JD. A rheological examination of the mucoadhesive/mucus interaction: the effect of mucoadhesive type and concentration. J Control Release 1998;50(1-3):167-78
  • Rossi S, Ferrari F, Bonferoni MC, Characterization of chitosan hydrochloride−mucin rheological interaction: influence of polymer concentration and polymer:mucin weight ratio. Eur J Pharm Sci 2001;12(4):479-85
  • Sriamornsak P, Wattanakorn N. Rheological synergy in aqueous mixtures of pectin and mucin. Carbohydr Polym 2008;74(3):474-81
  • Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 2005;59(1-6):1-152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.