345
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors

, , , , , , & show all
Pages 1323-1340 | Published online: 29 Jul 2011

Bibliography

  • Murray JC, Carmichael J. Targeting solid tumours: challenges, disappointments, and opportunities. Adv Drug Deliv Rev 1995;17:117-27
  • Au JL, Jang SH, Zheng J, Determinants of drug delivery and transport to solid tumors: Computational model of intracellular pharmacokinetics of paclitaxel. J Control Release 2001;74:31-46
  • Makrilia N, Lappa T, Xyla V, The role of angiogenesis in solid tumours: An overview. Eur J Int Med 2009;20:663-71
  • Gaze MN, Wheldon TE, O'Donoghue JA, Multi-modality megatherapy with [131I]metaiodobenzylguanidine, high dose melphalan and total body irradiation with bone marrow rescue: Feasibility study of a new strategy for advanced neuroblastoma. Eur J Cancer 1995;31:252-6
  • Schiller G. 2008 High-dose consolidation chemotherapy V bone marrow transplantation as postremission therapy in adult acute myeloid leukemia medicine. Available from: http://www.meds.com/leukemia/trends/mon_pt2.html [Last accessed 6 May 2009]
  • Rottenberg S, Jonkers J. Modeling therapy resistance in genetically engineered mouse cancer models. Drug Resist Updat 2008;11:51-60
  • Ge P, Luo Y, Fu S, Autophagy: A strategy for malignant gliomas' resistance to therapy. Med Hypotheses 2009;73:45-7
  • Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2005;1(1):22-30
  • Prabaharan M, Grailer JJ, Pilla S, Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(l-lactide and poly(ethylene glycol) for tumour-targeted drug delivery. Biomaterials 2009;30:3009-19
  • Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 2004;58:445-55
  • Vassileva V, Grant J, Souza R, Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother Pharmacol 2007;60:907-14
  • Pulsipher MA, Bader P, Klingebiel T, Cooper LJN. Allogeneic transplantation for pediatric acute lymphoblastic leukemia: The emerging Role of peritransplantation minimal residual disease/chimerism monitoring and novel chemotherapeutic, molecular, and immune approaches aimed at preventing relapse. Biol Blood Marrow Transplant 2009;15:62-71
  • Berrada M, Serreqi A, Dabbarh F, A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 2005;26:2115-20
  • Jackson JK, Gleave ME, Yago V, The suppression of human prostate tumor growth in mice by the intratumoral injection of a slow-release polymeric paste formulation of paclitaxel. Cancer Res 2000;60:4146-51
  • Eliaz R, Kost J. Composition and method for forming biodegradable implants in situ and uses of these implants. US6206920; 2001
  • Brem H. 1996. Developmental therapeutics program. National Cancer Institute (USA). Available from: http://images.google.co.za/imgres?imgurl=http://dtp.nci.nih.gov/timeline/images/subs/success_stories/SS_1/SS_1_Gliadel_72dpi_small.jpg&imgrefurl=http://dtp.nci.nih.gov/timeline/noflash/success_stories/S1_Carmustine.htm [Last accessed 6 May 2009]
  • Gopferich A. Bioerodable implants with programmable release. J Control Release 1997;44:271-81
  • Pezron E, Leibler L, Ricard A, Audebert R. Reversible gel formation induced by ion complexation. 2. Phase diagrams. Macromolecules 1988;21:1126-31
  • Bosch P, Del Monte F, Mateo JL, Levy D. Photopolymerization of hydroxyethylmethacrylate in the formation of organic-inorganic hybrid sol-gel matrices. J Polym Sci Polym Chem 2000;34:3289-96
  • Wei H, He J, Sun L, Gel formation and photopolymerization during supramolecular self-assemblies of alpha-CDs with LA–PEG–LA copolymer end-capped with methacryloyl groups. Eur Polym J 2005;41:948-57
  • Klouda L, Mikos AG. Review article: thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008;68:34-45
  • Puccetti G, Leblanc RM. Direct Evidence of the liquid−solid transition of a Sol−Gel material using photoacoustic spectroscopy. J Phys Chem 1996;100:1731-7
  • Park KH, Song SC. Morphology of spheroidal hepatocytes within injectable, biodegradable and thermo-sensitive poly(organophosphazene) hydrogel as cell delivery vehicle. J Biosci Bioeng 2006;101:238-42
  • Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermo-sensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 2007;3:838-50
  • Lue SJ, Hsu J, Wei T. Drug permeation modeling through the thermo-sensitive membranes of poly(N-isopropylacrylamide) brushes grafted onto micro-porous films. J Membr Sci 2008;321(2):146-54
  • Cole MA, Voelcker NH, Thissen H, Griesser HJ. Stimuli-responsive interfaces and systems for the control of protein–surface and cell–surface interactions. Biomaterials 2009;30:1827-50
  • Babich A. Tumor necrosis by controlled ebullism. Med Hypotheses 2005;64:318-19
  • He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008;127:189-207
  • Brinke GT, Karasz FE. Lower critical solution temperature behavior in polymer blends: compressibility and directional-specific interactions. Macromolecules 1984;17:815-20
  • Geever LM, Devine DM, Nugent MJD, Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur Polym J 2006;42:2540-8
  • Zhou Y, Yan D, Dong W, Tian Y. Temperature-responsive phase transition of polymer vesicles: real-time morphology observation and molecular mechanism. J Phys Chem B 2007;111:1262-70
  • Hacker MC, Klouda L, Ma BB, Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers. Biomacromolecules 2008;9:1558-70
  • Schuetz YB, Gurny R, Jordan O. A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 2008;68:19-25
  • Martin G, Jain RK. Non-invasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 1994;54:5670-4
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006;58:1655-70
  • Ravivarapu HB, Moyer KL, Dunn RL. Sustained activity and release of leuprolide acetate from an in situ forming polymeric implant. AAPS PharmSciTech 2000;1(1):article 1
  • Meyer DE, Shin BC, Kong GA, Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release 2001;74:213-24
  • Ho EA, Vassileva V, Allen C, Piquette-Miller M. In vitro and in vivo characterization of a novel biocompatible polymer–lipid implant system for the sustained delivery of paclitaxel. J Control Release 2005;104:181-91
  • Obara K, Ishihara M, Ozeki Y, Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 2005;110:79-89
  • Li XY, Kong XY, Wang XH, Gel-Sol-Gel thermo-gelation behavior study of chitosan-inorganic phosphate solutions. Eur J Pharm Biopharm 2010;75:388-92
  • Ono K, Saito Y, Yura H, Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 2000;49:289-95
  • Ganguly S, Dash AK. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm 2004;276:83-92
  • Cho YI, Park S, Jeong SY, Yoo HS. In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan-doxorubicin conjugates. Eur J Pharm Biopharm 2009;73:59-65
  • Soo PL, Cho J, Grant J, Drug release mechanism of paclitaxel from a chitosan–lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm 2008;69:149-57
  • Ho EA, Soo PL, Allen C, Piquette-Miller M. Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. J Control Release 2007;117:20-7
  • Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm 2008;355:1-18
  • Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater 2009;5:969-82
  • Hatefi A and Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release 2002;80:9-28
  • Bouhadir K, Alsberg E, Mooney DJ. Hydrogels for combination delivery of antineoplastic agents. Biomaterials 2001;22:2625-33
  • Jeyanthi R, Rao KP. Controlled release of anticancer drugs from collagen-poly(HEMA) hydrogel matrices. J Control Release 1990;13:91-8
  • Van Den Bulcke AI, Bogdanov B, De Rooze N. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 2000;1:31-8
  • Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002;7:569-80
  • Okino H, Nakayama Y, Tanaka M, Matsuda T. In situ hydrogelation of photocurable gelatin and drug release. J Biomed Mater Res 2002;59:233-45
  • Liu L, Sakaguchi T, Kanda T, Delivery of interleukin-12 in gelatin hydrogels effectively suppresses development of transplanted colonal carcinoma in mice. Cancer Chemother Pharmacol 2003;51:53-7
  • Kang HW, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 1999;20:1339-44
  • Hong L, Tabata Y, Miyamoto S, Bone regeneration at rabbit skull defects treated with transforming growth factor-b1 incorporated into hydrogels with different levels of biodegradability. J Neurosurg 2000;92:315
  • Konishi M, Tabata Y, Kariya M, In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J Control Release 2005;103:7-19
  • Kakinoki S, Taguchi T, Saito H, Injectable in situ forming drug delivery system for cancer chemotherapy using a novel tissue adhesive: characterization and in vitro evaluation. Eur J Pharm Biopharm 2007;66:383-90
  • Kakinoki S, Taguchi T. Antitumor effect of an injectable in-situ forming drug delivery system composed of a novel tissue adhesive containing doxorubicin hydrochloride. Eur J Pharm Biopharm 2007;67:676-81
  • Mok TS, Kanekal S, Lin XR, Pharmacokinetic study of intralesional cisplatin for the treatment of hepatocellular carcinoma. Cancer Chemother Pharmacol 2001;91:2369-77
  • Wenig BL, Werner JA, Castro DJ, The role of intratumoral therapy with cisplatin/epinephrine injectable gel in the management of advanced squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 2002;128:880-5
  • Burris HA III, Vogel CL, Castro D, Intratumoral cisplatin/epinephrine-injectable gel as a palliative treatment for accessible solid tumors: a multicenter pilot study. Otolaryngol Head Neck Surg 1998;118:496-503
  • Smith J, Stock E, Orenberg EK, Intratumoral chemotherapy with sustained-release drug delivery system inhibits growth of human pancreatic cancer xenografts. Anticancer Drugs 1995;6:717-26
  • Han J, Wang K, Yang D, Nie J. Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. Int J Biol Macromol 2009;44:229-35
  • Winnik FM. Phase transitions of poly-(N-isopropylacrylamide) solutions: A study by non-radiative energy transfer. Polymer (Guildf) 1990;31:2125-34
  • Jones DS, McMeel S, Adair CG, Gorman SP. Characterisation and evaluation of novel surfactant bacterial anti-adherent coatings for endotracheal tubes designed for the prevention of ventilator-associated pneumonia. J Pharm Pharmacol 2003;55:43-52
  • Yu Y, Li Z, Tian H, Synthesis and characterization of thermoresponsive hydrogels cross-linked with acryloyloxyethylaminopolysuccinimide. Colloid Polym Sci 2007;285:1553-60
  • Kim S, Healy KE. Synthesis and characterization of injectable Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 2003;4:1214-23
  • Zhang X, Du D, Chu CC. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels. Biomaterials 2004;25:4719-30
  • Hiremath JG, Devi VK, Devi K, Domb AJ. Biodegradable poly(sebacic acid-co-ricinoleic-ester anhydride) tamoxifen citrate implants: preparation and in vitro characterization. J Appl Polym Sci 2008;107:2745-54
  • Jeong B, Bae YH, Kima SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 2004;63:155-63
  • Chen S, Singh J. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int J Pharm 2005;295:183-90
  • Astaneh R, Nafissi-Varcheh N, Erfan M. Zinc–leuprolide complex: preparation, physicochemical characterization and release behavior from in situ forming implant. J Pept Sci 2007;13:649-54
  • Chen F, Kuriakose MA, Zhou M, Biodegradable polymer-mediated intratumoral delivery of cisplatin for treatment of human head and neck squamous cell carcinoma in a chimeric mouse model. Head Neck 2003;25:7554-60
  • Al-Abd AM, Hong K-Y, Song S-C, Kuh H-J. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release 2010;142:101-7
  • Sharifi S, Mirzadeh H, Imani M, Injectable in situ forming drug delivery system based on poly(epsilon-caprolactone fumarate) for tamoxifen citrate delivery: Gelation characteristics, in vitro drug release and anti-cancer evaluation. Acta Biomater 2009;5:1966-78
  • Qiu B, Stefanos S, Ma J, A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials 2003;24:11-18
  • Lalloo A, Chao P, Hu P, Pharmacokinetic and pharmacodynamic evaluation of a novel in situ forming poly(ethylene glycol)-based hydrogel for the controlled delivery of the camptothecins. J Control Release 2006;112:333-42
  • Tauro JR, Gemeinhart RA. Matrix Metalloprotease Triggered Delivery of Cancer Chemotherapeutics from Hydrogel Matrixes. Bioconjug Chem 2005;16:1133-9
  • Lee LY, Ranganath SH, Fu Y, Paclitaxel release from micro-porous PLGA discs. Chem Eng Sci 2009;64:4341-9
  • Ranganath SH, Fu Y, Arifin DY, The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma mice. Biomaterials 2010;31:5199-207
  • Brem H, Piantadosi S, Burger PC, Placebo controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995;345:1008-12
  • Perry J, Chambers A, Spithoff K, Laperriere N. Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol 2007;14:189-94
  • Chopko BW. Intracavitary carmustine polymer implantation as an adjunct to palliative metastatic vertebral column tumors. Surg Neurol 2009;72:553
  • Argyriou AA, Antonacopoulou A, Iconomou G, Kalofonos HP. Treatment options for malignant gliomas, emphasizing towards new molecularly targeted therapies. Crit Rev Oncol Hematol 2009;69:99-210
  • Jain JP, Modi S, Domb AJ, Kumar N. Role of polyanhydrides as localized drug carriers. J Control Release 2005;103:541-63
  • Gopferich A. Bioerodable implants with programmable release. J Control Release 1997;44:271-81
  • Vogelhuber W, Rotunno P, Magni E, Programmable biodegradable implants. J Control Release 2001;73:75-88
  • Madan M, Bajaj A, Lewis S, In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2009;71:242-51
  • Yu L, Chang GT, Zhang H, Ding JD. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm 2007;348:95-106
  • Exner AA, Krupka TM, Scherrer K, Teets JM. Enhancement of carboplatin toxicity by Pluronic block copolymers. J Control Release 2005;106:188-97
  • Amiji MM, Lai PK, Shenoy DB, Rao M. Intratumoral administration of paclitaxel in an in situ gelling poloxamer 407 formulation. Pharm Dev Technol 2007;7:195-202
  • Bae WK, Lee JH, Lee SJ, Enhanced anti-cancer effect of 5-Fluorouracil loaded into thermo-responsive conjugated linoleic acid-incorporated poloxamer hydrogel on metastatic colon cancer models. J Nanosci Nanotechnol 2011;11:1425-8
  • Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localized cancer therapy. J Control Release 2008;126:205-16
  • Gong CY, Shi S, Wu L, Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel, Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater 2009;5:3258-70
  • Fang F, Gong CY, Qian ZY, Honokiol nanoparticles in thermosensitive hydrogel: therapeutic effects on malignant pleural effusion. ACS Nano 2009;3:4080-8
  • He YC, Chen JW, Cao J, Toxicities and therapeutic effect of fluorouracil controlled release implant on tumor bearing rats. World J Gastroenterol 2003;9:1795-9
  • Winternitz CI, Jackson JK, Oktaba AM, Burt HM. Development of a polymeric surgical paste formulation for taxol. Pharm Res 1996;13:368-75
  • Jackson JK, Zhang X, Llewellen S, The characterization of novel polymeric paste formulations for intratumoral delivery. Int J Pharm 2004;270:185-98
  • Dordunoo SK, Oktaba AMC, Hunter W, Release of taxol from poly(epsi -caprolactone) pastes: effect of water-soluble additives. J Control Release 1997;44:87-94
  • Hunter WL, Burt HM, Machan L. Local delivery of chemotherapy: a supplement to existing cancer treatments: a case for surgical pastes and coated stents. Adv Drug Deliv Rev 1997;26:199-207
  • Dijkman GA, del Moral PF, Plasman JWMH, A new extra long acting depot preparation of the LHRH analogue Zoladex®: first endocrinological and pharmacokinetic data in patients with advanced prostate cancer. J Steroid Biochem Mol Biol 1990;37:933-6
  • Chertin B, Spitz IM, Lindenberg T, An implant releasing the gonadotropin hormone-releasing hormone agonist histrelin maintains medical castration for up to 30 months in metastatic prostate cancer. J Urol 2004;163:838-44
  • Ruel-Gariepy E, Shive M, Bichara A, A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 2004;57:53-63
  • Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 1999;20:2169-75
  • Packhauser CB, Schneiders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 2004;58:445-5
  • Chenite A, Chaput C, Wang D, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155-61

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.