584
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application

, Ph.D, , Ph.D &
Pages 457-472 | Published online: 21 Mar 2012

Bibliography

  • Noguchi H, Matsushita M, Kobayashi N, Recent advances in protein transduction technology. Cell Transplant 2010;19(6-7):649-54
  • Sawant R, Torchilin V. Intracellular transduction using cell-penetrating peptides. Mol Biosyst 2010;6(4):628-40
  • Joliot A, Prochiantz A. Transduction peptides: from technology to physiology. Nat Cell Biol 2004;6(3):189-96
  • Trehin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004;58(2):209-23
  • Ziegler A. Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 2008;160(4-5):580-97
  • Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta 2011;1816(2):232-46
  • Divita G, Heitz F, Morris MC. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 2009;157(2):195-206
  • Brasseur R, Divita G. Happy birthday cell penetrating peptides: already 20 years. Bba Biomembranes 2010;1798(12):2177-81
  • Snyder EL, Dowdy SF. Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids invivo. Expert OpinDrug Deliv 2005;2(1):43-51
  • Brooks NA, Pouniotis DS, Tang CK, Cell-penetrating peptides: application in vaccine delivery. Bba Rev Cancer 2010;1805(1):25-34
  • Arthanari Y, Pluen A, Rajendran R, Delivery of therapeutic shRNA and siRNA by Tat fusion peptide targeting bcr-abl fusion gene in Chronic Myeloid Leukemia cells. J Control Release 2010;145(3):272-80
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55(6):1189-93
  • Fawell S, Seery J, Daikh Y, Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 1994;91(2):664-8
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997;Jun20272(25):16010-17
  • Schwarze SR, Ho A, Vocero-Akbani A, In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999;285(5433):1569-72
  • Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 2005;57(4):559-77
  • Nam HY, Kim J, Kim S, Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery. Biomaterials 2011;32(22):5213-22
  • Howl J, Nicholl ID, Jones S. The many futures for cell-penetrating peptides: how soon is now? Biochem Soc Trans 2007;35:767-9
  • Rapoport M, Lorberboum-Galski H. TAT-based drug delivery system - new directions in protein delivery for new hopes? Expert Opin Drug Deliv 2009;6(5):453-63
  • Vives E. Present and future of cell-penetrating peptide mediated delivery systems: "Is the Trojan horse too wild to go only to Troy?". J Control Release 2005;109(1-3):77-85
  • Kawamoto S, Takasu M, Miyakawa T, Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys 2011;134(9):095103
  • Gillmeister MP, Betenbaugh MJ, Fishman PS. Cellular trafficking and photochemical internalization of cell penetrating peptide linked cargo proteins: a dual fluorescent labeling study. Bioconjugate Chem 2011;22(4):556-66
  • Esbjorner EK, Amand HL, Bostrom CL, Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake. Bba Biomembranes 2011;1808(7):1860-7
  • Raagel H, Saalik P, Pooga M. Peptide-mediated protein delivery-Which pathways are penetrable? Bba Biomembranes 2010;1798(12):2240-8
  • Hassane FS, Saleh AF, Abes R, Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 2010;67(5):715-26
  • Vives E, Schmidt J, Pelegrin A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta 2008;1786(2):126-38
  • Rullo A, Qian J, Nitz M. Peptide-glycosaminoglycan cluster formation involving cell penetrating peptides. Biopolymers 2011;95(10):722-31
  • Butko P, Tiriveedhi V. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry Us 2007;46(12):3888-95
  • Ziegler A, Blatter XL, Seelig A, Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 2003;42(30):9185-94
  • Esko JD, Bishop JR, Schuksz M. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007;446(7139):1030-7
  • Letoha T, Keller-Pinter A, Kusz E, Cell-penetrating peptide exploited syndecans. Bba Biomembranes 2010;1798(12):2258-65
  • Richard JP, Melikov K, Brooks H, Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 2005;280(15):15300-6
  • Tyagi M, Rusnati M, Presta M, Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 2001;276(5):3254-61
  • Kichler A, Mason AJ, Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Bba Biomembranes 2006;1758(3):301-7
  • Piwnica-Worms D, Violini S, Sharma V, Evidence for a plasma membrane-mediated permeability barrier to tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfates. Biochemistry 2002;41(42):12652-61
  • de Mendoza J, Blondeau P, Segura M, Molecular recognition of oxoanions based on guanidinium receptors. Chem Soc Rev 2007;36(2):198-210
  • Su YC, Waring AJ, Ruchala P, Membrane-Bound Dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from Solid-State NMR. Biochemistry 2010;49(29):6009-20
  • Ziegler A, Seelig J. Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophys J 2008;94(6):2142-9
  • Futaki S, Nakase I, Takeuchi T, Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv Drug Deliv Rev 2008;60(4-5):598-607
  • Futaki S, Nakase I, Tadokoro A, Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry Us 2007;46(2):492-501
  • Bernfield M, Gotte M, Park PW, Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999;68:729-77
  • Ter-Avetisyan G, Tunnemann G, Nowak D, Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 2009;284(6):3370-8
  • Eiriksdottir E, Mager I, Lehto T, Cellular internalization kinetics of (Luciferin-)cell-penetrating peptide conjugates. Bioconjugate Chem 2010;21(9):1662-72
  • Liu BR, Huang YW, Chiang HJ, Cell-Penetrating peptide-functionalized quantum dots for intracellular delivery. J Nanosci Nanotechnol 2010;10(12):7897-905
  • Brock R, Duchardt F, Fotin-Mleczek M, A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 2007;8(7):848-66
  • Futaki S, Nakase I, Taclokoro A, Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 2007;35:784-7
  • Zhang XP, Jin YJ, Pllummer MR, Endocytosis and membrane potential are required for hela cell uptake of RI-CKTat9, a retro-inverso tat cell penetrating peptide. Mol Pharm 2009;6(3):836-48
  • Wender PA, Rothbard JB, Jessop TC. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 2005;57(4):495-504
  • Ferrari A, Pellegrini V, Arcangeli C, Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 2003;8(2):284-94
  • Raub TJ, Roberts RM. Cell surface glycoproteins of CHO cells. II. Surface distribution and pathway of internalization. Exp Cell Res 1986;165(1):92-106
  • Huang M, Ma Z, Khor E, Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 2002;19(10):1488-94
  • Bruyninckx WJ, Comerford KM, Lawrence DW, Phosphoinositide 3-kinase modulation of beta(3)-integrin represents an endogenous "braking" mechanism during neutrophil transmatrix migration. Blood 2001;97(10):3251-8
  • Jones SW, Christison R, Bundell K, Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 2005;145(8):1093-102
  • Giacca M, Fittipaldi A. Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 2005;57(4):597-608
  • Nakase I, Niwa M, Takeuchi T, Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther 2004;10(6):1011-22
  • Jones AT. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J Cell Mol Med 2007;11(4):670-84
  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004;10(3):310-15
  • Yang ST, Zaitseva E, Chernomordik LV, Cell-Penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys J 2010;99(8):2525-33
  • Howl J, Jones S. Transport molecules using reverse sequence HIV-Tat polypeptides: not just any old Tat? (WO200808225). Expert Opin Ther Patent 2009;19(9):1329-33
  • Rothbard JB, Garlington S, Lin Q, Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 2000;6(11):1253-7
  • Schorderet DF, Manzi VD, Canola K, D-TAT transporter as an ocular peptide delivery system. Clin Exp Ophthalmol 2005;33(6):628-35
  • Dietz GPH, Kilic E, Bahr M. Inhibition of neuronal apoptosis in vitro and in vivo using TAT-Mediated protein transduction. Mol Cell Neurosci 2002;21(1):29-37
  • Wang Y, Lin H, Lin S, Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia-reperfusion injury in rats. J Cell Mol Med 2010;14(7):1998-2005
  • Miyaji Y, Walter S, Chen L, Distribution of KAI-9803, a novel {delta}PKC inhibitor, after intravenous administration to rats. Drug Metab Dispos 2011;39(10):1946-53
  • Doeppner TR, El Aanbouri M, Dietz GP, Transplantation of TAT-Bcl-xL-transduced neural precursor cells: long-term neuroprotection after stroke. Neurobiol Dis 2010;40(1):265-76
  • Yonezawa T, Kurata R, Kimura M, PKC delta and epsilon in drug targeting and therapeutics. Recent Pat DNA Gene Seq 2009;3(2):96-101
  • Bates E, Bode C, Costa M, Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 2008;117(7):886-96
  • Metzler B, Xu Q, Mayr M. Letter by Metzler et al regarding article, "Intracoronary KAI-9803 as an adjunct to primary coronary intervention for acute ST-segment elevation myocardial infarction". Circulation 2008;118(4):e80
  • Hirt L, Badaut J, Thevenet J, D-JNKI1, a cell-penetrating c-Jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia. Stroke 2004;35(7):1738-43
  • Repici M, Borsello T. JNK pathway as therapeutic target to prevent degeneration in the central nervous system. Hypoxia and Exercise 2006;588:145-55
  • Ohta Y, Kamiya T, Nagai M, Therapeutic benefits of intrathecal protein therapy in a mouse model of amyotrophic lateral sclerosis. J Neurosci Res 2008;86(13):3028-37
  • Boisguerin P, Redt-Clouet C, Franck-Miclo A, Systemic delivery of BH4 anti-apoptotic peptide using CPPs prevents cardiac ischemia-reperfusion injuries in vivo. J Control Release 2011;156(2):146-53
  • Dietz GP. Protection by neuroglobin and cell-penetrating peptide-mediated delivery in vivo: A decade of research Comment on Cai et al.: TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 2011;227(1):224-31
  • Cai B, Lin Y, Xue XH, TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 2011;227(1):224-31
  • Doeppner TR, Dietz GP, Weise J, Protection of hippocampal neurogenesis by TAT-Bcl-x(L) after cerebral ischemia in mice. Exp Neurol 2010;223(2):548-56
  • Dietz GPH. Cell-Penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr Pharm Biotechnol 2010;11(2):167-74
  • Doeppner TR, Nagel F, Dietz GP, TAT-Hsp70-mediated neuroprotection and increased survival of neuronal precursor cells after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2009;29(6):1187-96
  • Nagel F, Falkenburger BH, Tonges L, Tat-Hsp70 protects dopaminergic neurons in midbrain cultures and in the substantia nigra in models of Parkinson's disease. J Neurochem 2008;105(3):853-64
  • Simon MJ, Kang WH, Gao S, Increased delivery of TAT across an endothelial monolayer following ischemic injury. Neurosci Lett 2010;486(1):1-4
  • Simon MJ, Kang WH, Gao S, TAT is not capable of transcellular delivery across an intact endothelial monolayer in vitro. Ann Biomed Eng 2011;39(1):394-401
  • Harada H, Kizaka-Kondoh S, Hiraoka M. Antitumor protein therapy; application of the protein transduction domain to the development of a protein drug for cancer treatment. Breast Cancer 2006;13(1):16-26
  • Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 2005;57(4):579-96
  • Bitler BG, Schroeder JA. Anti-Cancer therapies that utilize cell penetrating peptides. Recent Pat AntiCancer 2010;5(2):99-108
  • Tsien RY, Jiang T, Olson ES, Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 2004;101(51):17867-72
  • Kwon YM, Li Y, Naik S, The ATTEMPTS delivery systems for macromolecular drugs. Expert Opin Drug Deliv 2008;5(11):1255-66
  • Huang YZ, Park YS, Wang JX, ATTEMPTS System: a macromolecular prodrug strategy for cancer drug delivery. Curr Pharm Des 2010;16(21):2369-76
  • Kizaka-Kondoh S, Harada H, Hiraoka M. Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 2002;62(7):2013-18
  • Inoue M, Mukai M, Hamanaka Y, Targeting hypoxic cancer cells with a protein prodrug is effective in experimental malignant ascites. Int J Oncol 2004;25(3):713-20
  • Olson ES, Aguilera TA, Jiang T, In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. Integr Biol (Camb) 2009;1(5-6):382-93
  • Aguilera TA, Olson ES, Timmers MM, Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol (Camb) 2009;1(5-6):371-81
  • Naik SS, Liang JF, Park YJ, Application of "ATTEMPTS" for drug delivery. J Control Release 2005;101(1-3):35-45
  • Yang VC, Kwon YM, Li YT, PTD-modified ATTEMPTS system for enhanced asparaginase therapy: a proof-of-concept investigation. J Control Release 2008;130(3):252-8
  • Li YT, Kwon YM, Spangrude GJ, Preliminary in vivo evaluation of the protein transduction domain-modified ATTEMPTS approach in enhancing asparaginase therapy. J Biomed Mater Res A 2009;91(1):209-20
  • Sawant R, Torchilin V. Intracellular delivery of nanoparticles with CPPs. Methods Mol Biol 2011;683:431-51
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008;60(4-5):548-58
  • Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 2008;90(5):604-10
  • Kale AA, Torchilin VP. Enhanced transfection of tumor cells in vivo using "Smart" pH-sensitive TAT-modified pegylated liposomes. J Drug Target 2007;15(7-8):538-45
  • Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 2007;118(2):216-24
  • Sethuraman VA, Lee MC, Bae YH. A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm Res 2008;25(3):657-66
  • Lee ES, Gao Z, Kim D, Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Control Release 2008;129(3):228-36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.