563
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in drug delivery strategies for treatment of ovarian cancer

, MSc, , PhD, , PhD & , PhD
Pages 567-583 | Published online: 27 Mar 2012

Bibliography

  • Sankaranarayanan R, Ferlay J. Worldwide burden of gynaecological cancer: the size of the problem. Best Pract Res Clin Obstet Gynaecol 2006;20(2):207-25
  • Markman M. Pharmaceutical management of ovarian cancer - Current status. Drugs 2008;68(6):771-89
  • Wenham RM. Ovarian cancer: a bright future. Cancer Contr 2011;18:4-5
  • Markman M. An update on the use of intraperitoneal chemotherapy in the management of ovarian cancer. Cancer J 2009;15(2):105-9
  • Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet 2009;374(9698):1371-82
  • Kim CK, Lim SJ. Recent progress in drug delivery systems for anticancer agents. Arch Pharm Res 2002;25(3):229-39
  • Engels FK, Mathot RAA, Verweij J. Alternative drug formulations of docetaxel: a review. Anticancer Drugs 2007;18(2):95-103
  • Panchagnula R. Pharmaceutical aspects of paclitaxel. Int J Pharm 1998;172(1-2):1-15
  • American Cancer Society. Cancer Facts & Figures 2010. American Cancer Society; Atlanta: 2010
  • Canadian Cancer Society's Steering Committee. Canadian Cancer Statistics 2010. Canadian Cancer Society; Toronto: 2010
  • Auersperg N, Wong AST, Choi KC, Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001;22(2):255-88
  • Karst AM, Drapkin R. Ovarian Cancer Pathogenesis: a Model in Evolution. J Oncol 2010;2010:932371
  • Chen VW, Ruiz B, Killeen JL, Pathology and classification of ovarian tumors. Cancer 2003;97(10):2631-42
  • Landen CN, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008;26(6):995-1005
  • Shih IM, Kurman RJ. Ovarian tumorigenesis – a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004;164(5):1511-18
  • Cannistra SA. Cancer of the ovary. N Engl J Med 2004;351(24):2519-29
  • Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 1999;91(17):1459-67
  • Colombo N, Van Gorp T, Parma G, Ovarian cancer. Crit Rev Oncol Hematol 2006;60(2):159-79
  • Purdie DM, Bain CJ, Siskind V, Ovulation and risk of epithelial ovarian cancer. Int J Cancer 2003;104(2):228-32
  • Cramer DW, Barbieri RL, Fraer AR, Determinants of early follicular phase gonadotrophin and estradiol concentrations in women of late reproductive age. Hum Reprod 2002;17(1):221-7
  • Helzlsouer KJ, Alberg AJ, Gordon GB, Serum gonadotropins and steroid-hormones and the development of ovarian-cancer. JAMA 1995;274(24):1926-30
  • Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone - Response. J Natl Cancer Inst 1999;91(7):650-1
  • Kurman RJ, Shih IM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 2010;34(3):433-43
  • Lee Y, Miron A, Drapkin R, A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol 2007;211(1):26-35
  • Levanon K, Ng V, Piao HY, Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 2010;29(8):1103-13
  • Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician 2009;80(6):609-16
  • Clarke-Pearson DL. Screening for ovarian cancer. N Engl J Med 2009;361(2):170-7
  • Karam AK, Karlan BY. Ovarian cancer: the duplicity of CA125 measurement. Nat Rev Clin Oncol 2010;7(6):335-9
  • Gubbels JA, Claussen N, Kapur AK, The detection, treatment, and biology of epithelial ovarian cancer. J Ovarian Res 2010;3(1):1-11
  • Benedet JL, Bender H, Jones H, FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO committee on gynecologic oncology. Int J Gynecol Obstet 2000;70(2):209-62
  • Bhoola S, Hoskins WJ. Diagnosis and management of epithelial ovarian cancer. Obstet Gynecol 2006;107(6):1399-410
  • Baird RD, Kaye SB. Drug resistance reversal - are we getting closer? Eur J Cancer 2003;39(17):2450-61
  • Harter P, Hilpert F, Mahner S, Role of cytoreductive surgery in recurrent ovarian cancer. Expert Rev Anticancer Ther 2009;9(7):917-22
  • Meigs JV. Tumors of the Female Pelvic Organs. MacMillan; New York: 1934
  • Griffiths CT. Surgical resection of tumor bulk in primary treatment of ovarian carcinoma. Natl Cancer Inst Monogr 1975;42:101-4
  • Hoskins WJ, Mcguire WP, Brady MF, The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol 1994;170(4):974-80
  • Alberts DS, Green S, Hannigan EV, Improved therapeutic index of carboplatin plus cyclophosphamide versus cisplatin plus cyclophosphamide: final report by the Southwest Oncology Group of a phase III randomized trial in stages III and IV ovarian cancer. J Clin Oncol 1992;10(5):706-17
  • Conte PF, Bruzzone M, Carnino F, Carboplatin, doxorubicin, and cyclophosphamide versus cisplatin, doxorubicin, and cyclophosphamide: a randomized trial in stage III-IV epithelial ovarian carcinoma. J Clin Oncol 1991;9(4):658-63
  • Gurney H, Crowther D, Anderson H, Five year follow-up and dose delivery analysis of cisplatin, iproplatin or carboplatin in combination with cyclophosphamide in advanced ovarian carcinoma. Ann Oncol 1990;1(6):427-33
  • Swenerton K, Jeffrey J, Stuart G, Cisplatin-cyclophosphamide versus carboplatin-cyclophosphamide in advanced ovarian cancer: a randomized phase III study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1992;10(5):718-26
  • McGuire WP, Hoskins WJ, Brady MF, Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 1996;334(1):1-6
  • du Bois A, Luck HJ, Meier W, A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 2003;95(17):1320-30
  • Ozols RF, Bundy BN, Greer BE, Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2003;21(17):3194-200
  • Vasey PA, Jayson GC, Gordon A, Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J Natl Cancer Inst 2004;96(22):1682-91
  • Bertelsen K, Jakobsen A, Stroyer I, A prospective randomized comparison of 6 and 12 cycles of cyclophosphamide, adriamycin, and cisplatin in advanced epithelial ovarian cancer: a Danish Ovarian Study Group trial (DACOVA). Gynecol Oncol 1993;49(1):30-6
  • Hakes TB, Chalas E, Hoskins WJ, Randomized prospective trial of 5 versus 10 cycles of cyclophosphamide, doxorubicin, and cisplatin in advanced ovarian carcinoma. Gynecol Oncol 1992;45(3):284-9
  • Lambert HE, Rustin GJS, Gregory WM, A randomized trial of five versus eight courses of cisplatin or carboplatin in advanced epithelial ovarian carcinoma - A North Thames Ovary Group Study. Ann Oncol 1997;8(4):327-33
  • Gore M, Mainwaring P, A'Hern R, Randomized trial of dose-intensity with single-agent carboplatin in patients with epithelial ovarian cancer. J Clin Oncol 1998;16(7):2426-34
  • Jakobsen A, Bertelsen K, Andersen JE, Dose-effect study of carboplatin in ovarian cancer: a Danish Ovarian Cancer Group study. J Clin Oncol 1997;15(1):193-8
  • McGuire WP, Hoskins WJ, Brady MF, Assessment of dose-intensive therapy in suboptimally debulked ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 1995;13(7):1589-99
  • Grenman S, Wiklund T, Jalkanen J, A randomised phase III study comparing high-dose chemotherapy to conventionally dosed chemotherapy for stage III ovarian cancer: the Finnish Ovarian Cancer (FINOVA) study. Eur J Cancer 2006;42(14):2196-9
  • Mobus V, Wandt H, Frickhofen N, Phase III trial of high-dose sequential chemotherapy with peripheral blood stem cell support compared with standard dose chemotherapy for first-line treatment of advanced ovarian cancer: intergroup trial of the AGO-Ovar/AIO and EBMT. J Clin Oncol 2007;25(27):4187-93
  • Schilder RJ, Brady MF, Spriggs D, Pilot evaluation of high-dose carboplatin and paclitaxel followed by high-dose melphalan supported by peripheral blood stem cells in previously untreated advanced ovarian cancer: a gynecologic oncology group study. Gynecol Oncol 2003;88(1):3-8
  • De Placido S, Scambia G, Di Vagno G, Topotecan compared with no therapy after response to surgery and carboplatin/paclitaxel in patients with ovarian cancer: multicenter Italian trials in ovarian cancer (MITO-1) randomized study. J Clin Oncol 2004;22(13):2635-42
  • du Bois A, Weber B, Rochon J, Addition of epirubicin as a third drug to carboplatin-paclitaxel in first-line treatment of advanced ovarian cancer: a prospectively randomized gynecologic cancer intergroup trial by the Arbeitsgemeinschaft Gynaekologische Onkologie Ovarian Cancer Study Group and the Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens. J Clin Oncol 2006;24(7):1127-35
  • Pfisterer J, Weber B, Reuss A, Randomized phase III trial of topotecan following carboplatin and paclitaxel in first-line treatment of advanced ovarian cancer: a gynecologic cancer intergroup trial of the AGO-OVAR and GINECO. J Natl Cancer Inst 2006;98(15):1036-45
  • Alberts DS, Liu PY, Hannigan EV, Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med 1996;335(26):1950-5
  • Armstrong DK, Bundy B, Wenzel L, Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 2006;354(1):34-43
  • Markman M, Bundy BN, Alberts DS, Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol 2001;19(4):1001-7
  • Ceelen WP, Flessner MF. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol 2010;7(2):108-15
  • Guarneri V, Piacentini F, Barbieri E, Achievements and unmet needs in the management of advanced ovarian cancer. Gynecol Oncol 2010;117(2):152-8
  • Howell SB, Pfeifle CL, Wung WE, Intraperitoneal cisplatin with systemic thiosulfate protection. Ann Intern Med 1982;97(6):845-51
  • DeGregorio MW, Lum BL, Holleran WM, Preliminary observations of intraperitoneal carboplatin pharmacokinetics during a phase I study of the Northern California Oncology Group. Cancer Chemother Pharmacol 1986;18(3):235-8
  • Morgan RJ, Doroshow JH, Synold T, Phase I trial of intraperitoneal docetaxel in the treatment of advanced malignancies primarily confined to the peritoneal cavity: dose-limiting toxicity and pharmacokinetics. Clin Cancer Res 2003;9(16):5896-901
  • Markman M, Rowinsky E, Hakes T, Phase I trial of intraperitoneal Taxol: a Gynecologic Oncology Group study. J Clin Oncol 1992;10(9):1485-91
  • Walker JL, Armstrong DK, Huang HQ, Intraperitoneal catheter outcomes in a phase III trial of intravenous versus Intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2006;100(1):27-32
  • Trimble EL, Alvarez RD. Intraperitoneal chemotherapy and the NCI clinical announcement. Gynecol Oncol 2006;103(2):S18-19
  • Robinson WR, Perry EK, Beyer JS, Intraperitoneal chemotherapy for ovarian cancer. Community Oncol 2010;7(2):67-72
  • Gray HJ, Shah CA, Swensen RE, Alternative intraperitoneal chemotherapy regimens for optimally debulked ovarian cancer. Gynecol Oncol 2010;116(3):340-4
  • Makhija S, Leitao M, Sabbatini P, Complications associated with intraperitoneal chemotherapy catheters. Gynecol Oncol 2001;81(1):77-81
  • Lesnock JL, Richard SD, Zorn KK, Completion of intraperitoneal chemotherapy in advanced ovarian cancer and catheter-related complications. Gynecol Oncol 2010;116(3):345-50
  • Naumann RW, Sukumvanich P, Edwards RP. Practice patterns of intraperitoneal chemotherapy in women with ovarian cancer. Gynecol Oncol 2009;114(1):37-41
  • Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 2008;65(20):3145-67
  • Batch C, Huang THM, Brown R, The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 2004;191(5):1552-72
  • Szakacs G, Paterson JK, Ludwig JA, Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5(3):219-34
  • Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer - mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265-83
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2(1):48-58
  • Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005;205(2):275-92
  • Brown JM, William WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004;4(6):437-47
  • Jang SH, Wientjes MG, Lu D, Drug delivery and transport to solid tumors. Pharm Res 2003;20(9):1337-50
  • Tannock IF. Tumor physiology and drug resistance. Cancer Metastasis Rev 2001;20(1-2):123-32
  • Tannock IF, Lee CM, Tunggal JK, Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 2002;8(3):878-84
  • Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49(23):6449-65
  • Harris AL. Hypoxia - a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1):38-47
  • Zunino F, Cassinelli G, Polizzi D, Molecular mechanisms of resistance to taxanes and therapeutic implications. Drug Resist Update 1999;2(6):351-7
  • Ganta S, Amiji M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 2009;6(3):928-39
  • Liu Z, Ballinger JR, Rauth AM, Delivery of an anticancer drug and a chemosensitizer to murine breast sarcoma by intratumoral injection of sulfopropyl dextran microspheres. J Pharm Pharmacol 2003;55(8):1063-73
  • Patil Y, Sadhukha T, Ma LN, Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 2009;136(1):21-9
  • Song XR, Cai Z, Zheng Y, Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009;37(3-4):300-5
  • Wong HL, Bendayan R, Rauth AM, Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 2006;116(3):275-84
  • De Souza R, Zahedi P, Moriyama EH, Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Mol Cancer Ther 2010;9(6):1820-30
  • Vassileva V, Grant J, De Souza R, Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother Pharmacol 2007;60(6):907-14
  • Vassileva V, Moriyama EH, De Souza R, Efficacy assessment of sustained intraperitoneal paclitaxel therapy in a murine model of ovarian cancer using bioluminescent imaging. Br J Cancer 2008;99(12):2037-43
  • Zahedi P, De Souza R, Piquette-Miller M, Chitosan-phospholipid blend for sustained and localized delivery of docetaxel to the peritoneal cavity. Int J Pharm 2009;377(1-2):76-84
  • Zahedi P, De Souza R, Huynh L, Combination drug delivery strategy for the treatment of multidrug resistant ovarian cancer. Mol Pharm 2011;8(1):260-9
  • Ali SM, Hoemann MZ, Aube J, Butitaxel analogues: synthesis and structure-activity relationships. J Med Chem 1997;40(2):236-41
  • Hennenfent KL, Govindan R. Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol 2006;17(5):735-49
  • van Zuylen L, Verweij J, Sparreboom A. Role of formulation vehicles in taxane pharmacology. Invest New Drugs 2001;19(2):125-41
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63(3):136-51
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12):6387-92
  • Farrell D, Ptak K, Panaro NJ, Nanotechnology-based cancer therapeutics-promise and challenge-lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res 2011;28(2):273-8
  • Zahedi P, Stewart J, De Souza R, An injectable depot system for sustained intraperitoneal chemotherapy of ovarian cancer results in favorable drug distribution at the whole body, peritoneal and intratumoral levels. J Control Release 2011; submitted
  • De Souza R, Zahedi P, Badame RM, Chemotherapy dosing schedule influences drug resistance development in ovarian cancer. Mol Cancer Ther 2011;10(7):1289-99
  • Ho EA, Soo PL, Allen C, Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. J Control Release 2007;117(1):20-7
  • Lu HX, Li B, Kang Y, Paclitaxel nanoparticle inhibits growth of ovarian cancer xenografts and enhances lymphatic targeting. Cancer Chemother Pharmacol 2007;59(2):175-81
  • Feng ZL, Zhao G, Yu L, Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs abraxane. Cancer Chemother Pharmacol 2010;65(5):923-30
  • Paraskar AS, Soni S, Chin KT, Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci USA 2010;107(28):12435-40
  • Dinulescu DM, Ince TA, Quade BJ, Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005;11(1):63-70
  • Devalapally H, Shenoy D, Little S, Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol 2007;59(4):477-84
  • Dong XW, Mattingly CA, Tseng MT, Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 2009;69(9):3918-26
  • Devalapally H, Duan ZF, Seiden MV, Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 2007;121(8):1830-8
  • van Vlerken LE, Duan ZF, Little SR, Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J 2010;12(2):171-80
  • Devalapally H, Duan ZF, Seiden MV, Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res 2008;14(10):3193-203
  • Li D, Zheng DH, Lu XW, Enhanced antitumor efficiency of docetaxel-loaded nanoparticles in a human ovarian xenograft model with lower systemic toxicities by intratumoral delivery. Oncol Rep 2010;23(3):717-24
  • Li Y, Xiao K, Luo J, Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 2011;32:6633-45
  • Xiao K, Luo JT, Fowler WL, A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 2009;30(30):6006-16
  • Kim D, Gao ZG, Lee ES, In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm 2009;6(5):1353-62
  • Xu PS, Van Kirk EA, Murdoch WJ, Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles. Biomacromolecules 2006;7(3):829-35
  • Jin W, Xu PS, Zhan YH, Degradable cisplatin-releasing core-shell nanogels from zwitterionic poly(beta-aminoester)-graft-PEG for cancer chemotherapy. Drug Deliv 2007;14(5):279-86
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005;102(1):203-22
  • Rapoport NY, Kennedy AM, Shea JE, Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 2009;138(3):268-76
  • Liu Y, Chen L, He X, Enhancement of therapeutic effectiveness by combining liposomal honokiol with cisplatin in ovarian carcinoma. Int J Gynecol Cancer 2008;18(4):652-9
  • Zhao H, Wang JC, Sun QS, RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target 2009;17(1):10-18
  • Pastorino F, Di Paolo D, Piccardi F, Enhanced antitumor efficacy of clinical-grade vasculature-targeted liposomal doxorubicin. Clin Cancer Res 2008;14(22):7320-9
  • Staffhorst RWHM, van der Born K, Erkelens CAM, Antitumor activity and biodistribution of cisplatin nanocapsules in nude mice bearing human ovarian carcinoma xenografts. Anti Cancer Drugs 2008;19(7):721-7
  • Dings RPM, Van Laar ES, Loren M, Inhibiting tumor growth by targeting tumor vasculature with galectin-1 antagonist anginex conjugated to the cytotoxic acylfulvene, 6-hydroxylpropylacylfulvene. Bioconjug Chem 2010;21(1):20-7
  • Dubikovskaya EA, Thorne SH, Pillow TH, Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci USA 2008;105(34):12128-33
  • Somjen D, Katzburg S, Nevo N, A daidzein-daunomycin conjugate improves the therapeutic response in an animal model of ovarian carcinoma. J Steroid Biochem 2008;110(1-2):144-9
  • Li C, Ke S, Wu QP, Tumor irradiation enhances the tumor-specific distribution of poly(L-glutamic acid)-conjugated paclitaxel and its antitumor efficacy. Clin Cancer Res 2000;6(7):2829-34
  • Li C, Ke S, Wu QP, Potentiation of ovarian OCa-1 tumor radioresponse by poly (L-glutamic acid)-paclitaxel conjugate. Int J Radiat Oncol Biol Phys 2000;48(4):1119-26
  • Li C, Price JE, Milas L, Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res 1999;5(4):891-7
  • Li C, Yu DF, Newman RA, Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid) paclitaxel conjugate. Cancer Res 1998;58(11):2404-9
  • Milas L, Mason KA, Hunter N, Poly(L-glutamic acid)-paclitaxel conjugate is a potent enhancer of tumor radiocurability. Int J Radiat Oncol Biol Phys 2003;55(3):707-12
  • Peterson CM, Lu JM, Sun YR, Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl)methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res 1996;56(17):3980-5
  • Shiah JG, Sun Y, Kopeckova P, Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e(6)-OV-TL 16 antibody immunoconjugates. J Control Release 2001;74(1-3):249-53
  • Tang HD, Murphy CJ, Zhang B, Curcumin polymers as anticancer conjugates. Biomaterials 2010;31(27):7139-49
  • Zhu SJ, Hong MH, Zhang LH, PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res 2010;27(1):161-74
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig 2008;26(1):57-64
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47(1):113-31
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54(5):631-51
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010;145(3):182-95
  • Bansal T, Akhtar N, Jaggi M, Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today 2009;14(21-22):1067-74
  • Elamanchili P, Mceachern C, Burt H. Reversal of multidrug resistance by methoxypolyethylene glycol-block-polycaprolactone diblock copolymers through the inhibition of P-glycoprotein function. J Pharm Sci 2009;98(3):945-58
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002;54(5):759-79
  • Nukolova NV, Oberoi HS, Cohen SM, Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 2011;32(23):5417-26
  • Cirstoiu-Hapca A, Buchegger F, Lange N, Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: therapeutic efficacy and biodistribution in mice. J Control Release 2010;144(3):324-31
  • Zhang XY, Chen J, Zheng YF, Follicle-stimulating hormone peptide can facilitate paclitaxel nanoparticles to target ovarian carcinoma in vivo. Cancer Res 2009;69(16):6506-14
  • Winer I, Wang SY, Lee YEK, F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res 2010;70(21):8674-83
  • Jabr-Milane LS, van Vlerken LE, Yadav S, Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 2008;34(7):592-602
  • Hirano K, Hunt CA. Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration. J Pharm Sci 1985;74(9):915-21
  • Kohane DS, Tse JY, Yeo Y, Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res Part A 2006;77A(2):351-61
  • Tsai M, Lu Z, Wang J, Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res 2007;24(9):1691-701
  • Kim SC, Kim DW, Shim YH, In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 2001;72(1-3):191-202
  • Kim TY, Kim DW, Chung JY, Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004;10(11):3708-16
  • Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin - Review of animal and human studies. Clin Pharmacokinet 2003;42(5):419-36
  • Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008;60(8):886-98
  • Mundargi RC, Babu VR, Rangaswamy V, Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 2008;125(3):193-209
  • Harper E, Dang WB, Lapidus RG, Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER Delivery System) for local-regional therapy of lung cancer tumor nodules in mice. Clin Cancer Res 1999;5(12):4242-8
  • Armstrong DK, Fleming GF, Markman M, A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer®) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 2006;103(2):391-6
  • Kang BK, Chon SK, Kim SH, Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int J Pharm 2004;286(1-2):147-56
  • Lu Z, Tsai M, Lu D, Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther 2008;327(3):673-82
  • De Souza R, Zahedi P, Allen CJ, Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv 2010;17(6):365-75
  • Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel) – clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 2009;61(10):785-94
  • Attenello FJ, Mukherjee D, Datoo G, Use of gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 2008;15(10):2887-93
  • Westphal M, Hilt DC, Bortey E, A phase III trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol 2003;5(2):79-88
  • Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release 2002;80(1-3):9-28
  • Yang Y, Wang JC, Zhang X, A novel mixed micelle gel with thermo-sensitive property for the local delivery of docetaxel. J Control Release 2009;135(2):175-82
  • Grant J, Blicker M, Piquette-Miller M, Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J Pharm Sci 2005;94(7):1512-27
  • Ho EA, Vassileva V, Allen C, In vitro and in vivo characterization of a novel biocompatible polymer-lipid implant system for the sustained delivery of paclitaxel. J Control Release 2005;104(1):181-91
  • Grant J, Lee H, Soo PL, Influence of molecular organization and interactions on drug release for an injectable polymer-lipid blend. Int J Pharm 2008;360(1-2):83-90
  • De Souza R, Zahedi P, Allen C, Biocompatibility of injectable chitosan-phospholipid implant systems. Biomaterials 2009;30:3818-24
  • Zahedi P, De Souza R, Piquette-Miller M, Docetaxel distribution following intraperitoneal administration in mice. J Pharm Pharm Sci 2011;14(1):90-9
  • Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004;4(6):423-36
  • Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol 2005;288(3):F433-42
  • van Dam GM, Themelis G, Crane LMA, Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 2011;17(10):1315-19
  • Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer 2006;6(8):583-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.