1,226
Views
143
CrossRef citations to date
0
Altmetric
Reviews

In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery

, &
Pages 383-402 | Published online: 21 Mar 2012

Bibliography

  • Calvo P, Alonso MJ, Vila-Jato JL, Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 1996;48:1147-52
  • Barar J, Asadi M, Mortazavi-Tabatabaei SA, Ocular drug delivery; impact of in vitro cell culture models. J Ophthalmol Vis Res 2009;4:238-52
  • Lee VHL, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol Ther 1986;2:67-108
  • Jain SP, Shah SP, Rajadhyaksha NS, In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery. Drug Dev Ind Pharm 2008;34:445-52
  • Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 2002;28:353-69
  • Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery:: corneal penetration and absorption. J control release 2000;63:135-40
  • Sultana Y, Aqil M, Ali A, Advances in the topical ocular drug delivery. Expert Rev Ophthalmol 2007;2:309-23
  • Nanjawade BK, Manvi FV, Manjappa AS. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 2007;122:119-34
  • Mundada AS, Avail JG. In situ gelling polymers in ocular drug delivery systems: a review. Crit Rev Ther Drug 2009;26:85-118
  • Ulijn RV, Bibi N, Jayawarna V, Bioresponsive hydrogels. Mater Today 2007;10:40-8
  • Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 2002;54:79-98
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53:321-39
  • Bromberg LE, Ron ES. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 1998;31:197-221
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001;53:321-39
  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008;68:34-45
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 2002;54:37-51
  • Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm 2004;58:409-26
  • Bhowmik M, Bain MK, Ghosh LK, Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels. Pharm Dev Technol 2011;16:1-7
  • El-Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 2002;241:47-55
  • Paavola A, Yliruusi J, Rosenberg P. Controlled release and dura mater permeability of lidocaine and ibuprofen from injectable poloxamer-based gels. J Control Release 1998;52:169-78
  • Desai SD, Blanchard J. In vitro evaluation of pluronic F127 based controlled release ocular delivery systems for pilocarpine. J Pharm Sci 1998;87:226-30
  • Kumar S, Haglund BO, Himmelstein KJ. In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol Ther 1994;10:47-56
  • Zaki I, Fitzgerald P, Hardy JG, A comparison of the effect of viscosity on the precorneal residence of solutions in rabbit and man. J Pharm Pharmacol 1986;38:463-6
  • Zhu H, Chauhan A. Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci 2008;85:E715-25
  • Burgalassi S, Chetoni P, Panichi L, Xyloglucan as a novel vehicle for timolol: pharmacokinetics and pressure lowering activity in rabbits. J Ocul Pharmacol Ther 2000;16:497-509
  • Miyazaki S, Suzuki S, Kawasaki N, In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm 2001;229:29-36
  • Hsiue GH, Hsu S, Yang CC, Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide. Biomaterials 2002;23:457-62
  • Hsiue GH, Chang RW, Wang CH, Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 2003;24:2423-30
  • Cao Y, Zhang C, Shen W, Poly (N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 2007;120:186-94
  • Miller SC, Donovan MD. Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm 1982;12:147-52
  • Edsman K, Carlfors J, Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci 1998;6:105-12
  • Kim EY, Gao ZG, Park JS, rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. Int J Pharm 2002;233:159-67
  • Qi H, Chen W, Huang C, Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm 2007;337:178-87
  • Qian Y, Wang F, Li R, Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Drug Dev Ind Pharm 2010;36:1340-7
  • Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm 2011;411:128-35
  • Gao Y, Sun Y, Ren F, PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm 2010;36:1131-8
  • Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 2004;29:1173-222
  • Chenite A, Chaput C, Wang D, Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155-61
  • Agrawal AK, Gupta PN, Khanna A, Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie 2010;65:188-93
  • Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26:5983-90
  • Gupta H, Jain S, Mathur R, Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system. Drug Deliv 2007;14:507-15
  • Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. Open Drug Deliv J 2008;2:61-70
  • Gratieri T, Gelfuso GM, Rocha EM, A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm 2010;75:186-93
  • Gupta H, Aqil M, Khar RK, Development and characterization of 99 m Tc-timolol maleate for evaluating efficacy of in situ ocular drug delivery system. AAPS Pharm Sci Tech 2009;10:540-6
  • Gupta H, Velpandian T, Jain S. Ion-and pH-activated novel in-situ gel system for sustained ocular drug delivery. J Drug Target 2010;18:499-505
  • Chen X, Li X, Zhou Y, Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation. J Biomater Appl 2011; Published online 12 July 2011; doi:10.1177/0885328211406563
  • Kumar S, Himmelstein KJ. Modification of in situ gelling behavior of carbopol solutions by hydroxypropyl methylcellulose. J Pharm Sci 1995;84:344-8
  • Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 2001;73:205-11
  • Wu C, Qi H, Chen W, Preparation and evaluation of a carbopol®/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi 2007;127:183-91
  • Jain SP, Shah SP, Rajadhyaksha NS, In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery. Drug Dev Ind Pharm 2008;34:445-52
  • Kesavan K, Kant S, Singh PN, Effect of hydroxypropyl-beta-cyclodextrin on the ocular bioavailability of dexamethasone from a pH-induced mucoadhesive hydrogel. Curr Eye Res 2011;36:918-29
  • Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release 2000;69:379-88
  • Morris ER, Gothard MGE, Hember MWN, Conformational and rheological transitions of welan, rhamsan and acylated gellan. Carbohydr Polym 1996;30:165-75
  • Kang KS, Veeder GT, Mirrasoul PJ, Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl Environ Microbiol 1982;43:1086-91
  • Rozier A, Mazuel C, Grove J, Gelrite®: a novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. Int J Pharm 1989;57:163-8
  • Okamoto T, Kubota K. Sol-gel transition of polysaccharide gellan gum. Carbohydr Polym 1996;30:149-53
  • Rozier A, Mazuel C, Grove J, Functionality testing of gellan gum, a polymeric excipient material for ophthalmic dosage forms. Int J Pharm 1997;153:191-8
  • Paulsson M, Hagerstrom H, Edsman K. Rheological studies of the gelation of deacetylated gellan gum (Gelrite®) in physiological conditions. Eur J Pharm Sci 1999;9:99-105
  • Carlfors J, Edsman K, Petersson R, Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur J Pharm Sci 1998;6:113-19
  • Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of the Gelrite gellan gum-based ocular delivery system for indomethacin. Acta Pharm 2003;53:251-61
  • Balasubramaniam J, Pandit JK. Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv 2003;10:185-91
  • Sultana Y, Aqil M, Ali A. Ion-activated, Gelrite®-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Deliv 2006;13:215-19
  • Cohen S, Lobel E, Trevgoda A, A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J control release 1997;44:201-8
  • Lin HR, Sung KC, Vong WJ. In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules 2004;5:2358-65
  • Liu Z, Li J, Nie S, Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 2006;315:12-17
  • Ammar HO, Salama HA, Ghorab M, Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm 2010;36:1330-9
  • Nanjwade BK, Deshmukh RV, Gaikwad KR, Formulation and evaluation of micro hydrogel of moxifloxacin hydrochloride. Eur J Drug Metab Pharmacokinet 2011;36:1-7
  • Nagarwal RC, Kumar R, Dhanawat M, Modified PLA nano in-situ gel: a potential ophthalmic drug delivery system. Colloids Surf B Biointerfaces 2011;86:28-34
  • Ma WD, Xu H, Wang C, Pluronic F127-poly (acrylic acid) copolymers as in-situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm 2008;350:247-56
  • Ma W, Xu H, Nie S, Temperature-responsive, pluronic-g-poly (acrylic acid) copolymers in situ gels for ophthalmic drug delivery: rheology, in vitro drug release, and in vivo resident property. Drug Dev Ind Pharm 2008;34:258-66
  • Bain MK, Bhowmik M, Ghosh SN, In situ fast gelling formulation of methyl cellulose for in vitro ophthalmic controlled delivery of ketorolac tromethamine. J Appl Polym Sci 2009;113:1241-6
  • Bhowmik M, Das S, Chattopadhyay D, Study of thermo-sensitive in-situ gels for ocular delivery. Sci Pharm 2011;79:351
  • Wei G, Xu H, Ding PT, Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release 2002;83:65-74
  • Mansour M, Mansour S, Mortada ND, Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels. Drug Dev Ind Pharm 2008;34:744-52
  • Mayol L, Quaglia F, Borzacchiello A, A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm 2008;70:199-206
  • Shastri DH, Prajapati ST, Patel LD. Design and development of thermoreversible ophthalmic in situ hydrogel of moxifloxacin HCl. Curr Drug Deliv 2010;7:238-43
  • Nesseem DI. Ophthalmic delivery of sparfloxacin from in situ gel formulation for treatment of experimentally induced bacterial keratitis. Drug Test Anal 2010;3:106-15
  • Wu H, Liu Z, Peng J, Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm 2011;410:31-40
  • Manjappa AS, Nanjwade BK, Manvi FV, Sustained ophthalmic in situ gel of ketorolac tromethamine: rheology and in vivo studies. Drug Dev Res 2009;70:417-24
  • Gupta S, Vyas SP. Carbopol/Chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm 2010;78:959-76
  • El-Laithy HM, Nesseem DI, El-Adly AA, Moxifloxacin-gelrite In Situ ophthalmic gelling system against photodynamic therapy for treatment of bacterial corneal inflammation. Arch Pharm Res 2011;34:1663-78
  • Rupenthal ID, Alany RG, Green CR. Ion-activated in situ gelling systems for antisense oligodeoxynucleotide delivery to the ocular surface. Mol Pharmaceutics 2011; published online 9 October 2011; doi: 101021/mp200140e
  • Gratieri T, Gelfuso GM, de Freitas O, Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm 2011;79:320-7
  • Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm 2011;411:69-77
  • Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: precorneal retention and in vivo pharmacodynamic study. Int J Pharm 2011;411:78-85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.