530
Views
86
CrossRef citations to date
0
Altmetric
Reviews

Advancement in multifunctional nanoparticles for the effective treatment of cancer

, , , , , , & show all
Pages 367-381 | Published online: 08 Mar 2012

Bibliography

  • Warner S. Diagnostic + therapy = theranostics. Scientist 2004;18:38-9
  • Jaffer FA, Weissleder R. Molecular imaging in the clinical arena. JAMA 2005;293:855-62
  • Reichert JM, Wenger JB. Development trends for new cancer therapeutics and vaccines. Drug Discov Today 2008;13:30-7
  • Yezhelyev MV, Gao X, Xing Y, Emerging use nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 2006;7:657-67
  • Liong M, Lu J, Kovochich M, Multifunctional inorganic nanoparticles for imaging targeting, and drug delivery. ACS Nano 2008;25:889-96
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161-71
  • Medina C, Santos-Martinez MJ, Radomski A, Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 2007;150:552-8
  • Adiseshaiah PP, Hall JB, Scott E, Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:99-12
  • Kukowska-Latallo JF, Candido KA, Cao Z, Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65:5317-24
  • McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60:1241-51
  • Acharya S, Dilnawaz F, Sahoo SK, Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 2009;30:5737-50
  • Lukianova-Hleb EY, Hanna EY, Hafner JH, Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 2010;21:85-102
  • Shubayev VI, Pisanic TR, Jin S, Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009;61:467-77
  • Shim MS, Kim CS, Ahn YC, combined multimodal optical imaging and targeted gene silencing using stimuli-transforming nanotheragnostics. J Am Chem Soc 2010;132:8316-24
  • Morales MP, Veintemillas VS, Montero MI, Surface and internal spin canting in gamma- Fe2O3 nanoparticles. Chem Mater 1999;11:3058-64
  • Xie J, Huang J, Li X, Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 2009;16:1278-94
  • Remesen LG, McCormick CI, Roman-Goldstein SGN, MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. AJNR Am J Neuroradiol 1996;17(3):411-18
  • Kresse M, Wagner S, Pfefferer D, Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 1998;40(2):236-42
  • Wang YX, Hussain SM, krestin GP. Superparamagnetic iron oxide contrast agents:physiochemical characteristics and application in MR imaging. Eur Radiol 2001;11(11):2319-31
  • Hahn PF, Stark DD, Lewis JM, First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imagine. Radiology 1990;175(3):695-700
  • Reimer P, Tombach B. Hepatic MRI with SPIO: detection and characterization of focal liver lesion. Eur Radiol 1998;8(7):1198-4
  • Weissleder R, Stark DD, Engelstad BL, Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989;2(1):167-73
  • Duguet E, Vasseur S, Mornet S, Magnetic nanoparticles and their applications in medicine. Nanomedicine 2006;1:157-68
  • Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 2007;46:1222-44
  • Kang YS, Risbud S, Rabolt JF, Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater 1996;8:2209-11
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-21
  • Lanza GM, Winter PM, Caruthers SD, Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 2004;11:733-43
  • Mornet S, Vasseur S, Grasset F, Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 2004;14:2161-75
  • Park J, Lee E, Hwang NM, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 2005;44:2872-7
  • Kohler N, Fryxell GE, Zhang MQ. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 2004;126:7206-11
  • Kohler N, Sun C, Fichtenholtz A, Methotrexate immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006;2:785-92
  • Kohler N, Sun C, Wang J, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 2005;21:8858-64
  • Hwu JR, Lin YS, Josephrajan T, Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 2009;131:66-8
  • Jain TK, Richey J, Strand M, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008;29:4012-21
  • Yu MK, Jeong YY, Park J, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 2008;47:5362-5
  • Piao Y, Kim J, Bin Na H, Wrap-bake-peel process for nanostructural transformation from beta- FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 2008;7:242-7
  • Cheng K, Peng S, Xu C, Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc 2009;131:10637-44
  • Medarova Z, Pham W, Farrar C, In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007;13:372-7
  • Miao S, Hickey SG, Rellinghaus B, Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared. J Am Chem Soc 2010;132:5613-15
  • Zimmer JP, Kim SW, Ohnishi S, Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 2006;128:2526-7
  • Xie R, Chen K, Chen X, In As/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res 2008;1:457-64
  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065-70
  • Yuan J, Guo W, Yang X, Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. Anal Chem 2009;81:362-8
  • Chen AA, Derfus AM, Khetani SR, Quantum dots to monitor RNA delivery and improve gene silencing. Nucleic Acids Res 2005;33:190
  • Qi L, Gao X. Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2008;2:1403-10
  • Bonoiu A, Mahajan SD, Ye L, MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier. Brain Res 2009;1282:142-55
  • Bakalova R, Ohba H, Zhelev Z, Quantum dots as photosensitizers? Nat Biotechnol 2004;22:1360-1
  • Tsay JM, Trzoss M, Shi L, Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 2007;129:6865-71
  • Jana NR, Earhart C, Ying JY. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 2007;19:5074-82
  • Ow H, Larson DR, Srivastava M, Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 2005;5:113-17
  • Hsiao JK, Tsai CP, Chung TH, Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small 2008;4:1445-52
  • Sathe TR, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem 2006;78:5627-32
  • Koole R, van Schooneveld MM, Hilhorst J, Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 2008;19:2471-9
  • Roy I, Ohulchanskyy Pudavar HE, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 2003;125:7860-5
  • Kim S, Ohulchanskyy TY, Pudavar HE, Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 2007;129:2669-75
  • Slowing II, Vivero-Escoto JL, Wu CW, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008;60:1278-88
  • Manzano M, Colilla M, Vallet-Regi M. Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv 2009;6:1383-400
  • Vivero-Escoto JL, Slowing II, Wu CW, Photoinduced intracellular controlled release drug delivery in human cells by gold-capped Mesoporous silica nanosphere. J Am Chem Soc 2009;131:3462-3
  • Giri S, Trewyn BG, Stellmaker MP, Stimuli-responsive controlled release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed Engl 2005;44:5038-44
  • Park JH, Gu L, Von Maltzahn G, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009;8:331-6
  • Welsher K, Liu Z, Daranciang D, Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 2008;8:586-90
  • Liu Z, Li X, Tabakman SM, Multiplexed multi-color Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 2008;130:13540-1
  • Pompeo F, Resasco DE. Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine. Nano Lett 2002;2:369-73
  • Peng H, Alemany LB, Margrave JL, Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J Am Chem Soc 2003;125:15174-82
  • Katz E, Willner I. Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 2004;5:1084-04
  • Bianco A, Kostarelos K, Partidos CD, Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb) 2005;5:571-7
  • Schipper ML, Nakayama-Ratchford N, Davis CR, A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 2008;3:216-22
  • Kam NW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 2006;45:577-81
  • Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 2008;8:1577-85
  • Kostarelos K, Lacerda L, Pastorin G, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2:108-13
  • Singh R, Pantarotto D, McCarthy D, Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 2005;127:4388-96
  • Paciotti GF, Myer L, Weinreich D, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 2004;11:169-83
  • Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res 2006;67:47-54
  • Connor EE, Mwamuka J, Gole A, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1:325-7
  • Hu M, Chen JY, Li ZY, Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006;35:1084-94
  • Chen J, Saeki F, Wiley BJ, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005;5:473-7
  • Link S, El-Sayed MA. Size and temperature dependence of the Plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 1999;103:4212-17
  • Dixit V, Van den Bossche J, Sherman DM, Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem 2006;17:603-9
  • Oyelere AK, Chen PC, Huang X, Peptide conjugated gold nanorods for nuclear targeting. Bioconjug Chem 2007;18:1490-7
  • Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 2007;129:11653-61
  • Goel R, Shah N, Visaria R, Biodistribution of TNF-alphacoated gold nanoparticles in an in vivo model system. Nanomedicine (Lond) 2009;4:401-10
  • Cheng Y, Samia AC, Meyers JD, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 2008;130:10643-7
  • Prabaharan M, Grailer JJ, Pilla S, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor targeted drug delivery. Biomaterials 2009;30:6065-75
  • Huang X, El-Sayed IH, Qian W, Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 2007;7:1591-7
  • Chen J, Glaus C, Laforest R, Gold nanocages as photothermal transducers for cancer treatment. Small 2010;6:811-17
  • Lee CC, MacKay JA, Frechet Jean MJ, Designing dendrimers for biological applications. Nat Biotechnol 2005;23:1517-26
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications — reflections on the field. Adv Drug Deliv Rev 2005;57:2106-29
  • Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10:35-43
  • Morgan MT, Carnahan MA, Immoos CE, Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 2003;125:15485-9
  • Gurdag S, Khandare J, Stapels S, Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjug Chem 2006;17:275-83
  • Papagiannaros A, Dimas K, Papaioannou GT, Doxorubicin- PAMAM dendrimer complex attached to liposomes: cytotoxic studies against human cancer cell lines. Int J Pharm 2005;302:29-38
  • Lee CC, Gillies ER, Fox ME, A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 2006;103:16649-54
  • Hong S, Leroueil PR, Majoros IJ, The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 2007;14:107-15
  • Morgan MT, Carnahan MA, Immoos CE, Dendritic molecular capsules for hydrophobic compounds. J Am Chem Soc 2003;125:15485-9
  • Wiener EC, Konda S, Shadron A, Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol 1997;32:748-54
  • Zhang YB, Tan YW, Stormer HL, Experimental observation of the quantum hall effect and Berry's phase in grapheme. Nature 2005;438:201
  • Novoselov KS, Jiang Z, Zhang Y, Room-temperature quantum Hall effect in grapheme. Science 2007;315:1379
  • Balandin AA, Ghosh S, Bao W, Superior thermal conductivity of single-layer grapheme. Nano Lett 2008;8:902
  • Lee C, Wei X, Kysar JW, Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 2008;321:385
  • Li X, Wang X, Zhang L, Chemically derived, ultra smooth graphene nanoribbon semiconductors. Science 2008;319:1229
  • Berger C, Song ZM, Li TB, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 2004;108:19912
  • Zelada-Guillen GA, Rius J, Duzgun A, Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed 2009;48:7334-7
  • Novoselov KS, Geim AK, Morozov SV, Electric field effect in atomically thin carbon films. Science 2004;306:666-9
  • Sutter PW, Flege JI, Sutter EA, Epitaxial graphene on ruthenium. Nat Mater 2008;7:406-11
  • Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol 2009;4:217-24
  • Han TH, Lee WJ, Lee DH, Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater 2010;22:2060-4
  • Liu JB, Fu S, Yuan B, Toward a universal ‘‘adhesive nanosheet'' for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 2010;132:7279-81
  • Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications — a review. J Drug Target 1998;6:167-74
  • Thorek DL, Chen AK, Czupryna J, Superparamagnetic iron oxides nanoparticles probes for molecular imaging. Ann Biomed Eng 2006;34(1):23-38
  • Yu MK, Jeong YY, Park J, Drug loaded Supoerparamegnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 2008;47(29):5362-5
  • Briley–Saebo K, Bjornerud A, Grant D, Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injections in rats: implications for magnetic resonance imaging. Cell Tissue Res 2004;316:315-23
  • Arruebo M, Fernandez-Pacheco R, Ricardo Ibarra MR, Magnetic nanoparticles for drug delivery. Nano Today 2007;2:22-32
  • Akhter S, Ahmad MZ, Rahman M, Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 2011;17:1834-50
  • Gupta AK, Naregalkar RR, Vaidya VD, Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2007;2:23-39
  • Bertorelle F, Wilhelm C, Roger J, Fluorescence modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 2006;22:5385-91
  • Lee JH, Jun YW, Yeon SI, Dual-mode nanoparticle probes for high- performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem 2006;45:8160-2
  • Zhang CF, Jinquan C, Duanzhi Y, Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy. Appl Radiat Isot 2004;61:1255-9
  • Cao JQ. Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J Magn Magn Mater 2004;277:165-74
  • Ahmad MZ, Akhter S, Rahman M, Metallic nanoparticles: technology overview and drug delivery application in oncology. Expert Opin Drug Deliv 2010;7(8):927-42
  • Maurice PB. Bioconjugated nanoparticles. US3177868; 2008
  • Eric LM, Kim KWM, Barnaby W, Nanoparticles. US67485; 2004
  • Miqin Z, Nathan K, Jonathan WG. Magnetic nanoparticle composition and methods. US616239; 2006
  • James WV, Robert PG. Magnetic nanoparticle therapies. US255403; 2008
  • Nicholas AK. Bioconjugates of nanoparticle as radiopharmaceuticals. US6689338; 2004
  • Rinat OE. Radiation and nanoparticles for enhancement of drug delivery in solid tumours. US6165440; 2000
  • Hannah. Carbon nanotube molecular label. US6187823; 2004
  • Paul Alivisatos A. Semiconductor liquid crystal composition and methods for making the same. US6884478; 2005
  • Kenneth Klabunde J. Carbon-coated metal oxide nanoparticles. US6843919; 2005
  • Regulla DF. Method and apparatus for differential energy application for local dose enhancement of ionizing radiation. US6001054; 1999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.