663
Views
68
CrossRef citations to date
0
Altmetric
Reviews

Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy

, , , , &
Pages 541-550 | Published online: 05 Apr 2012

Bibliography

  • Hegde NR, Kaveri SV, Bayry J. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discov Today 2011;16(23-24):1061-8
  • Koutsonanos DG, del Pilar Martin M, Zarnitsyn VG, Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One 2009;4(3):e4773
  • Nicolas JF, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines 2008;7(8):1201-14
  • Warger T, Schild H, Rechtsteiner G. Initiation of adaptive immune responses by transcutaneous immunization. Immunol Lett 2007;109(1):13-20
  • Stoitzner P, Sparber F, Tripp CH. Langerhans cells as targets for immunotherapy against skin cancer. Immunol Cell Biol 2010;88(4):431-7
  • Kenney RT, Yu J, Guebre-Xabier M, Induction of protective immunity against lethal anthrax challenge with a patch. J Infect Dis 2004;190(4):774-82
  • Combadiere B, Vogt A, Mahe B, Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One 2010;5(5):e10818
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 2008;26(26):3197-208
  • Wysocki AB. Skin anatomy, physiology, and pathophysiology. Nurs Clin North Am 1999;34(4):777; 97, v
  • Chuong CM, Nickoloff BJ, Elias PM, What is the 'true' function of skin? Exp Dermatol 2002;11(2):159-87
  • Williams AC, Barry BW. Skin absorption enhancers. Crit Rev Ther Drug Carrier Syst 1992;9(3-4):305-53
  • Wiechers JW. The barrier function of the skin in relation to percutaneous absorption of drugs. Pharm Weekbl Sci 1989;11(6):185-98
  • Tobin DJ. Biochemistry of human skin–our brain on the outside. Chem Soc Rev 2006;35(1):52-67
  • Asbill CS, El-Kattan AF, Michniak B. Enhancement of transdermal drug delivery: chemical and physical approaches. Crit Rev Ther Drug Carrier Syst 2000;17(6):621-58
  • Menon GK. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev 2002;54(Suppl 1):S3-17
  • Siddiqui O. Physicochemical, physiological, and mathematical considerations in optimizing percutaneous absorption of drugs. Crit Rev Ther Drug Carrier Syst 1989;6(1):1-38
  • Scheuplein RJ. Permeability of the skin: a review of major concepts. Curr Probl Dermatol 1978;7:172-86
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449(7161):419-26
  • Banchereau J, Briere F, Caux C, Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711
  • Ginhoux F, Ng LG, Merad M. Understanding the murine cutaneous dendritic cell network to improve intradermal vaccination strategies. Curr Top Microbiol Immunol 2012;351:1-24
  • Teunissen MB, Haniffa M, Collin MP. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 2012;351:25-76
  • Steinman RM, Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 2006;311:17-58
  • Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008;8(12):935-47
  • Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 2010;234(1):120-41
  • Takahara K, Omatsu Y, Yashima Y, Identification and expression of mouse langerin (CD207) in dendritic cells. Int Immunol 2002;14(5):433-44
  • Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol 2005;17(4):273-83
  • Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002;99(1):351-8
  • Larregina AT, Falo LD Jr. Changing paradigms in cutaneous immunology: adapting with dendritic cells. J Invest Dermatol 2005;124(1):1-12
  • Bursch LS, Wang L, Kissenpfennig A, Identification of a novel population of langerin+ dendritic cells. J Exp Med 2007;204(13):3147-56
  • Ginhoux F, Collin MP, Bogunovic M, Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med 2007;204(13):3133-46
  • Poulin LF, Henri S, Kissenpfennig A, The dermis contains langerin+ dendritic cells that develop and function independently of epidermal langerhans cells. J Exp Med 2007;204(13):3119-31
  • Romani N, Koide S, Crowley M, Presentation of exogenous protein antigens by dendritic cells to T cell clones. intact protein is presented best by immature, epidermal langerhans cells. J Exp Med 1989;169(3):1169-78
  • Stoitzner P, Tripp CH, Eberhart A P, Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci USA 2006;103(20):7783-8
  • Stoitzner P, Green LK, Jung JY, Tumor immunotherapy by epicutaneous immunization requires langerhans cells. J Immunol 2008;180(3):1991-8
  • Cunningham AL, Carbone F, Geijtenbeek TB. Langerhans cells and viral immunity. Eur J Immunol 2008;38(9):2377-85
  • Kautz-Neu K, Meyer RG, Clausen BE, Leishmaniasis, contact hypersensitivity and graft-versus-host disease: understanding the role of dendritic cell subsets in balancing skin immunity and tolerance. Exp Dermatol 2010;19(8):760-71
  • Kaplan DH, Kissenpfennig A, Clausen BE. Insights into Langerhans cell function from Langerhans cell ablation models. Egypt J Immunol 2008;38(9):2369-76
  • Stoecklinger A, Eticha TD, Kissenpfennig A, Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH gamma-1 class switching in response to gene gun vaccines. J Immunol 2011;186(3):1377-83
  • Angel CE, Lala A, Chen CJ, CD14+ antigen-presenting cells in human dermis are less mature than their CD1a+ counterparts. Int Immunol 2007;19(11):1271-9
  • Klechevsky E, Morita R, Liu M, Functional specializations of human epidermal langerhans cells and CD14+ dermal dendritic cells. Immunity 2008;29(3):497-510
  • van der Aar AM, de Groot R, Sanchez-Hernandez M, Cutting edge: virus selectively primes human langerhans cells for CD70 expression promoting CD8+ T cell responses. J Immunol 2011;187(7):3488-92
  • Garland MJ, Migalska K, Donnelly RF, Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 2011;8(4):459-82
  • Donnelly RF, Majithiya R, Singh TR, Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 2011;28(1):41-57
  • Chen X, Fernando GJ, Crichton ML, Mproving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release 2011;152(3):349-55
  • Henry S, McAllister DV, Allen MG, Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 1998;87(8):922-5
  • Prausnitz MR, Mikszta JA, Cormier M, Microneedle-based vaccines. Curr Top Microbiol Immunol 2009;333:369-93
  • Donnelly RF, Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 2010;17(4):187-207
  • Zhou CP, Liu YL, Wang HL, Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm 2010;392(1-2):127-33
  • Ding Z, Verbaan FJ, Bivas-Benita M, Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 2009;136(1):71-8
  • Ding Z, Van Riet E, Romeijn S, Immune modulation by adjuvants combined with diphtheria toxoid administered topically in BALB/c mice after microneedle array pretreatment. Pharm Res 2009;26(7):1635-43
  • Bal SM, Slutter B, van Riet E, Efficient induction of immune responses through intradermal vaccination with N-trimethyl chitosan containing antigen formulations. J Control Release 2010;142(3):374-83
  • Bhowmik T, D'Souza B. Shashidharamurthy R, et al. novel microparticulate vaccine for melanoma cancer using transdermal delivery. J Microencapsul 2011;28(4):294-300
  • Cleary GW. Microneedles for drug delivery. Pharm Res 2011;28(1):1-6
  • Shah UU, Roberts M, Orlu Gul M, NIHR MCRN/Arthritis Research UK Paediatric Rheumatology Clinical Studies Group. Needle-free and microneedle drug delivery in children: a case for disease-modifying antirheumatic drugs (DMARDs). Int J Pharm 2011;416(1):1-11
  • Kim YC, Quan FS, Compans RW, Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 2010;142(2):187-95
  • Hiraishi Y, Nandakumar S, Choi SO, Bacillus calmette-guerin vaccination using a microneedle patch. Vaccine 2011;29(14):2626-36
  • Weldon WC, Martin MP, Zarnitsyn V, Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin Vaccine Immunol 2011;18(4):647-54
  • Prow TW, Chen X, Prow NA, Nanopatch-targeted skin vaccination against west nile virus and chikungunya virus in mice. Small 2010;6(16):1776-84
  • Corbett HJ, Fernando GJ, Chen X, Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PLoS One 2010;5(10):e13460
  • Fernando GJ, Chen X, Prow TW, Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS One 2010;5(4):e10266
  • Matriano JA, Cormier M, Johnson J, Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 2002;19(1):63-70
  • Widera G, Johnson J, Kim L, Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine 2006;24(10):1653-64
  • Escobar-Chavez JJ, Bonilla-Martinez D, Villegas-Gonzalez MA, Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J Clin Pharmacol 2011;51(7):964-77
  • Amorij JP, Hinrichs WL, Frijlink HW, Needle-free influenza vaccination. Lancet Infect Dis 2010;10(10):699-711
  • Wang PM, Cornwell M, Hill J, Precise microinjection into skin using hollow microneedles. J Invest Dermatol 2006;126(5):1080-7
  • Frost GI. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 2007;4(4):427-40
  • Bal SM, Ding Z, van Riet E, Advances in transcutaneous vaccine delivery: do all ways lead to rome? J Control Release 2010;148(3):266-82
  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 2009;27(3):454-9
  • Alarcon JB, Hartley AW, Harvey NG, Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin Vaccine Immunol 2007;14(4):375-81
  • Mikszta JA, Dekker JP III, Harvey NG, Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. Infect Immun 2006;74(12):6806-10
  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010;16(8):915-20
  • Raphael AP, Prow TW, Crichton ML, Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small 2010;6(16):1785-93
  • Levine MM, Sztein MB. Vaccine development strategies for improving immunization: the role of modern immunology. Nat Immunol 2004;5(5):460-4
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70(1-2):1-20
  • McCarron PA, Donnelly RF, Marouf W. Celecoxib-loaded poly(D,L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. J Microencapsul 2006;23(5):480-98
  • Eniola AO, Hammer DA. Artificial polymeric cells for targeted drug delivery. J Control Release 2003;87(1-3):15-22
  • Jaganathan KS, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 2006;24(19):4201-11
  • Gutierro I, Hernandez RM, Igartua M, Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002;21(1-2):67-77
  • Lu D, Garcia-Contreras L, Xu D, Poly (lactide-co-glycolide) microspheres in respirable sizes enhance an in vitro T cell response to recombinant mycobacterium tuberculosis antigen 85B. Pharm Res 2007;24(10):1834-43
  • Sharp FA, Ruane D, Claass B, Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 2009;106(3):870-5
  • de Jalon EG, Blanco-Prieto MJ, Ygartua P, PLGA microparticles: possible vehicles for topical drug delivery. Int J Pharm 2001;226(1-2):181-4
  • Jenning V, Gysler A, Schafer-Korting M, Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000;49(3):211-18
  • Alvarez-Roman R, Naik A, Kalia YN, Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 2004;21(10):1818-25
  • Alvarez-Roman R, Naik A, Kalia YN, Skin penetration and distribution of polymeric nanoparticles. J Control Release 2004;99(1):53-62
  • Luengo J, Weiss B, Schneider M, Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol Physiol 2006;19(4):190-7
  • Lademann J, Richter H, Teichmann A, Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 2007;66(2):159-64
  • Toll R, Jacobi U, Richter H, Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 2004;123(1):168-76
  • Coulman SA, Anstey A, Gateley C, Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm 2009;366(1-2):190-200
  • McAllister DV, Wang PM, Davis SP, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 2003;100(24):13755-60
  • Bal SM, Slutter B, Jiskoot W, Small is beautiful: N-trimethyl chitosan-ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 2011;29(23):4025-32
  • Ueno H, Schmitt N, Klechevsky E, Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010;234(1):199-212
  • Hegde NR, Kaveri SV, Bayry J. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination. Drug Discov Today 2011;16(23-24):1061-8
  • Harvey AJ, Kaestner SA, Sutter DE, Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharmaceutical Research 2011;28(1):107-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.